|
|
退火工艺对含Nb高强无取向硅钢组织及性能的影响 |
黄俊, 罗海文( ) |
北京科技大学冶金与生态工程学院 北京 100083 |
|
Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel |
Jun HUANG, Haiwen LUO( ) |
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
Jun HUANG,
Haiwen LUO.
Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. Acta Metall Sin, 2018, 54(3): 377-384.
[1] | Gong J, Luo H W.Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles[J]. J. Mater. Eng., 2015, 43: 102(龚坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展 [J]. 材料工程, 2015, 43: 102) | [2] | Pan Z D, Xiang L, Zhang C, et al.Development of high-strength non-oriented electrical steel by TSCR[J]. Iron Steel Van. Tit., 2013, 34(4): 78(潘振东, 项利, 张晨等. TSCR试制高强度无取向电工钢 [J]. 钢铁钒钛, 2013, 34(4): 78) | [3] | Nippon Steel Corporation. High-tensile-strength non-oriented electrical steel sheet with good workability and magnetic properties[P]. Japan Pat, H1-162748, 1989(新日本製鐵株式会社. 加工性と磁気特性のすぐれた高抗張力無方向性電磁鋼板 [P]. 日本专利, 平1-162748, 1989) | [4] | Hong S G, Kang K B, Park C G.Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scr. Mater., 2002, 46: 163 | [5] | Craven A J, He K, Garvie L A J, et al. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels—I. (Ti, Nb)(C, N) particles[J]. Acta Mater., 2000, 48: 3857 | [6] | Andrade H L, Akben M G, Jonas J J.Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels[J]. Metall. Trans., 1983, 14A: 1967 | [7] | Chang L, Hwang Y S.Effect of vanadium content and annealing temperature on recrystallisation, grain growth, and magnetic propertiesin 0.3% Si electrical steels[J]. Mater. Sci. Technol., 1998, 14: 608 | [8] | Nippon Steel Corporation. Non-oriented electrical steel sheet [P]. Chin Pat, 102292462A, 2011(新日本制铁株式会社. 无方向性电磁钢板 [P]. 中国专利, 102292462A, 2011) | [9] | Hulka K, Vlad C, Doniga L A.The role of niobium as microalloying element in electrical sheet[J]. Steel Res. Int., 2002, 73: 453 | [10] | Tanaka I, Yashiki H, Iwamoto S, et al.Development of high strength electrical steel SXRC of resource-saving design[J]. Bull. Jpn Inst. Met., 2010, 49: 29 | [11] | Goldschmidt H J.The constitution of the iron-niobium-silicon system[J]. J. Iron Steel Inst., 1960, 194: 169 | [12] | Raghavan V, Ghosh G.The Fe-Nb-Si (iron-niobium-silicon) system[J]. Trans. Indian Inst. Met., 1984, 37: 421 | [13] | Singh B N, Gupta K P.Laves and μ phases in the Nb-Fe-Si and Co-Fe-Si systems[J]. Metall. Trans., 1972, 3: 1427 | [14] | Denham A W.Extent and lattice parameters of the laves phase field in the Fe-Nb-Si system[J]. J. Iron Steel Inst., 1967, 205: 435 | [15] | Steinmetz J, Albrecht J M, Zanne M, et al.A new ternary silicide of Nb and Fe[J]. Compt. Rend., 1975, 281: 831 | [16] | Wang D, Yang S Y, Yang M J, et al.Experimental investigation of phase equilibria in the Fe-Nb-Si ternary system[J]. J. Alloys Compd., 2014, 605: 183 | [17] | Xu T D, Song S H, Shi H Z, et al.A method of determining the diffusion coefficient of vacancy-solute atom complexes during the segregation to grain boundaries[J]. Acta Metall., 1991, 39: 3119 | [18] | Wang K, Xu T D, Song S H, et al.Graphical representation for isothermal kinetics of non-equilibrium grain-boundary segregation[J]. Mater. Charact., 2011, 62: 575 | [19] | Fu L M, Shan A D, Wang W.Effect of Nb solute drag and NbC precipitate pinning on the recrystallization grain growth in low carbon Nb-microalloyed steel[J]. Acta Metall. Sin., 2010, 46: 832(付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响 [J]. 金属学报, 2010, 46: 832) | [20] | Jenkins K, Lindenmo M.Precipitates in electrical steels[J]. J. Magn. Magn. Mater., 2008, 320: 2423 | [21] | De Campos M F, Teixeira J C, Landgraf F J G. The optimum grain size for minimizing energy losses in iron[J]. J. Magn. Magn. Mater., 2006, 301: 94 | [22] | Shiozaki M, Kurosaki Y.The effects of grain size on the magnetic properties of nonoriented electrical steel sheets[J]. J. Mater. Eng., 1989, 11: 37 | [23] | Huneus H, Günther K, Kochmann T, et al.Nonoriented magnetic steel with improved texture and permeability[J]. J. Mater. Eng. Perform., 1993, 2: 199 | [24] | Gheorghies C, Doniga A.Evolution of texture in grain oriented silicon steels[J]. J. Iron Steel Res. Int., 2009, 16: 78 | [25] | Mao W M, Yang P.Material Science Principles on Electrical Steels [M]. Beijing: High Education Press, 2013: 121(毛卫民, 杨平. 电工钢的材料学原理 [M]. 高等教育出版社, 2013: 121) | [26] | Park J T, Szpunar J A.Evolution of recrystallization texture in nonoriented electrical steels[J]. Acta Mater., 2003, 51: 3037 | [27] | Hutchinson W B.Development of textures in recrystallization[J]. Met. Sci., 1974, 8: 185 | [28] | Jong-Tae P, Szpunar J A.Texture development during grain growth in nonoriented electrical steels[J]. ISIJ Int., 2005, 45: 743 | [29] | Zhou S B, Chen Y T, Feng D J, et al.Effect of Al in the nonoriented electrical steel on texture and grain boundary development during grain growth[J]. Electr. Eng. Mater., 2010,(1): 33)(周顺兵, 陈颜堂, 冯大军等. Al在无取向电工钢晶粒长大过程中对织构及晶界变化的影响 [J]. 电工材料, 2010, (1): 33). | [30] | Emren F, Von Schlippenbach U, Lücke K.Investigation of the development of the recrystallization textures in deep drawing steels by ODF analysis[J]. Acta Metall., 1986, 34: 2105 | [31] | Zhao Y, He Z Z, Weng Q Y, et al.Grain boundary segregation in electrical steels[J]. J. Iron Steel Res., 1995, 7(1): 66(赵宇, 何忠治, 翁庆宇等. 电工钢中的晶界偏聚 [J]. 钢铁研究学报, 1995, 7(1): 66) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|