|
|
MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究 |
赵小宇, 黄峰( ), 甘丽君, 胡骞, 刘静 |
武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430000 |
|
Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment |
Xiaoyu ZHAO, Feng HUANG( ), Lijun GAN, Qian HU, Jing LIU |
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430000, China |
引用本文:
赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
Xiaoyu ZHAO,
Feng HUANG,
Lijun GAN,
Qian HU,
Jing LIU.
Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. Acta Metall Sin, 2017, 53(12): 1579-1587.
[1] | Zhou C S, Zheng S Q, Chen C F, et al.The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel[J]. Corros. Sci., 2013, 67: 184 | [2] | Al-Mansour M, Alfantazi A M, El-boujdaini M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel[J]. Mater. Des., 2009, 30: 4088 | [3] | Hejazi D, Haq A J, Yazdipour N, et al.Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking[J]. Mater. Sci. Eng., 2012, A551: 40 | [4] | Zhou C S, Huang Q Y, Guo Q, et al.Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy[J]. Corros. Sci., 2016, 110: 242 | [5] | Olden V, Alvaro A, Akselsen O M.Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint—Experiments and FE simulations[J]. Int. J. Hydrogen Energy, 2012, 37: 11474 | [6] | Zhao W M, Zhao T M, Zhao Y J, et al.Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J]. Corros. Sci., 2016, 111: 84 | [7] | Forero A B, Ponciano J A C, Bott I S. Susceptibility of pipeline girth welds to hydrogen embrittlement and sulphide stress cracking[J]. Mater. Corros., 2014, 65: 531 | [8] | Dong C F, Xiao K, Liu Z Y, et al.Hydrogen induced cracking of X80 pipeline steel[J]. Int. J. Min. Metall. Mater., 2010, 17: 579 | [9] | Park G T, Koh S U, Jung H G, et al.Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corros. Sci., 2008, 50: 1865 | [10] | Chang K D, Gu J L, Fang H S, et al.Effects of heat-treatment process of a novel bainite/martensite dual-phase high strength steel on its susceptibility to hydrogen embrittlement[J]. ISIJ Int., 2001, 41: 1397 | [11] | Arafin M A, Szpunar J A.Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking[J]. Mater. Sci. Eng., 2011, A528: 4927 | [12] | Shi X B, Yan W, Wang W, et al.Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel[J]. J. Iron Steel. Res., 2015, 22: 937 | [13] | Hardie D, Charles E A, Lopez A H.Hydrogen embrittlement of high strength pipeline steels[J]. Corros. Sci., 2006, 48: 4378 | [14] | Huang F, Liu S, Liu J, et al.Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2S environment[J]. Mater. Sci. Eng., 2014, A591: 159 | [15] | Huang F, Li X G, Liu J, et al.Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel[J]. J. Mater. Sci., 2011, 46: 715 | [16] | Huang F, Liu J, Deng Z J, et al.Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel[J]. Mater. Sci. Eng., 2010, A527: 6997 | [17] | Zhang X L, Zhuang C J, Ji L K, et al.Effective particle size of high grade pipeline steels[J]. Mater. Mech. Eng., 2007, 31(3): 4(张小立, 庄传晶, 吉玲康等. 高钢级管线钢的有效晶粒尺寸[J]. 机械工程材料, 2007, 31(3): 4) | [18] | Dong J M, Mao Q Y, Bi Z Y, et al.Analysis on microstructure and impact toughness of X100 and X80 pipeline steel[J]. Welded Pipe Tube, 2014, 37(12): 16(董俊明, 毛秋英, 毕宗岳等. X100和X80管线钢组织与冲击性能分析[J]. 焊管, 2014, 37(12): 16) | [19] | Saleh A A, HejazI D, Gazder A A, et al. Investigation of the effect of electrolytic hydrogen charging of X70 steel: II. Microstructural and crystallographic analyses of the formation of hydrogen induced cracks and blisters[J]. Int. J. Hydrogen Energy, 2016, 41: 12424 | [20] | Sun Y W, Chen J Z, Liu J.Study on hydrogen embrittlement susceptibility of 1000 MPa grade 0Cr16Ni5Mo steel[J]. Acta Metall. Sin., 2015, 51: 1315(孙永伟, 陈继志, 刘军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报, 2015, 51: 1315) | [21] | Masoumi M, Silva C C, de Abreu H F G. Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing[J]. Corros. Sci., 2016, 111: 121 | [22] | Ma H C, Liu Z Y, Du C W, et al.Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corros. Sci., 2015, 100: 627 | [23] | Haq A J, Muzaka K, Dunne D P, et al.Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels[J]. Int. J. Hydrogen Energy, 2013, 38: 2544 | [24] | Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel[J]. Int. J. Hydrogen Energy, 2016, 41: 4185 | [25] | Marchetti L, Herms E, Laghoutaris P, et al.Hydrogen embrittlement susceptibility of tempered 9%Cr-1%Mo steel[J]. Int. J. Hydrogen Energy, 2011, 36: 15880 | [26] | Peng X H, Liu J, Huang F, et al.Effect of microstructure on hydrogen-induced cracking propagation and hydrogen trapping efficiency of pipeline steel[J]. Corros. Prot., 2013, 34: 882(彭先华, 刘静, 黄峰等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响[J]. 腐蚀与防护, 2013, 34: 882) | [27] | Mohtadi-Bonab M A, Eskandari M, Szpunar J A. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking[J]. Mater. Sci. Eng., 2015, A620: 97 | [28] | Hu C L, Xia S, Li H, et al.Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939(胡长亮, 夏爽, 李慧等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939) | [29] | Mohtadi-Bonab M A, Karimdadashi R, Eskandari M, et al. Hydrogen-induced cracking assessment in pipeline steels through permeation and crystallographic texture measurements[J]. J. Mater. Eng. Perform., 2016, 25: 1781 | [30] | Zhang T M, Wang Y, Zhao W M, et al.Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment[J]. Acta Metall. Sin., 2015, 51: 1101(张体明, 王勇, 赵卫民等. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51: 1101) | [31] | Arafin M A, Szpunar J A.A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies[J]. Corros. Sci., 2009, 51: 119 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|