Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1568-1578    DOI: 10.11900/0412.1961.2017.00095
  本期目录 | 过刊浏览 |
富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为
于利宝1,2, 闫茂成1(), 马健3, 吴明浩3, 舒韵1,4, 孙成1, 许进1, 于长坤1, 卿永长1,2
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京100049
3 中国石油新疆油田油气储运分公司 克拉玛依 834002
4 中国科学技术大学材料科学与工程学院 沈阳 110016
Sulfate Reducing Bacteria Corrosion of Pipeline Steel inFe-Rich Red Soil
Libao YU1,2, Maocheng YAN1(), Jian MA3, Minghao WU3, Yun SHU1,4, Cheng SUN1, Jin XU1, Changkun YU1, Yongchang QING1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Xinjiang Oilfield Branch Company, China National Petroleum Corporation, Karamay 834002, China
4 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

于利宝, 闫茂成, 马健, 吴明浩, 舒韵, 孙成, 许进, 于长坤, 卿永长. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53(12): 1568-1578.
Libao YU, Maocheng YAN, Jian MA, Minghao WU, Yun SHU, Cheng SUN, Jin XU, Changkun YU, Yongchang QING. Sulfate Reducing Bacteria Corrosion of Pipeline Steel inFe-Rich Red Soil[J]. Acta Metall Sin, 2017, 53(12): 1568-1578.

全文: PDF(8016 KB)   HTML
摘要: 

采用电化学阻抗谱(EIS)、极化扫描和循环伏安(CV)等电化学技术,结合SEM表面形貌分析技术,研究高强度低合金X80管线钢在富Fe酸性红壤环境中的硫酸盐还原菌(SRB)腐蚀行为及电化学过程。结果表明,酸性红壤环境中,环境适应期(前7 d) SRB对腐蚀电化学过程没有明显影响;SRB生长期的呼吸代谢活动导致X80钢的自然腐蚀电位降低,显著促进了管线钢的腐蚀过程;SRB通过胞外铁呼吸可与红壤颗粒表层FeOOH/Fe2O3等铁氧化物发生作用,引起FeOOH/Fe2O3的微生物异化还原,该过程中,SRB作为电子传输媒介,参与Fe和氧化铁间的电子转移,该机制是SRB促进局部腐蚀电化学过程的主要原因。提出了SRB促进红壤中管线钢微生物腐蚀(MIC)与胞外铁呼吸机制之间的联系。

关键词 管线钢微生物腐蚀(MIC)土壤腐蚀电子转移铁呼吸    
Abstract

Corrosion of buried pipeline in iron-rich clay mineral, such as the red soil, is a great issue for safety and economy concern in various industrial applications, e.g. oil/gas, water, sewerage disposal systems, which may partly attribute to the active Fe oxides constituents residing in the clay. Although various parameters on metallic corrosion in red soil have been widely studied, some soil properties affecting corrosion are still not fully understood, such as synergistic action of sulfate reducing bacteria (SRB) and Fe oxides in iron-rich clay. Anaerobic SRB, which reduce sulfate to sulfide, have long been associated with corrosion of steel and have been the focus of most research on biocorrosion. Recently, there have been numerous studies showing that SRB can reduce oxidized metals, such as Fe(III), Mn(IV), and some SRB are capable of coupling metal reduction to growth, so Fe(III) reduction in clay minerals by SRB will have great impacts on corrosion processes. Most of previous studies focused on the single parameter, such as microbial activities, Fe oxides, but neglected their synergistic action. In this work, to further mechanistic understanding the synergistic action between SRB and Fe oxides, the indoor immersed experiment was desinged. Open circuit potential (EOCP), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and polarization potential scanning were used to monitor the corrosion electrochemical process of the X80 pipeline steel electrode. Microscopic surface observation was studied by SEM. The results showed that, SRB had no significant effect on the electrochemical process during the environmental adaptation period (the initial 7 d). The decrease of EOCP and electrochemical impedance (|Z|) of the X80 steel was resulted by the SRB iron respiration activity in the growing period, which significantly promoted the corrosion process of the steel. The SRB acts as an electron transport medium to participate in the electron transfer between Fe and iron oxide, which may lead to the electrochemical reduction of the iron oxides in the surface of red soil particles by the action of extracellular iron respiration, and it's the main reason to promote the local corrosion electrochemical process. The relationship between the corrosion of the material in the Fe-rich red soil and the microbial extracellular iron respiration was proposed.

Key wordspipeline steel    microbiologically induced corrosion (MIC)    soil corrosion    electron transfer    iron respiration
收稿日期: 2017-03-24     
ZTFLH:  TG172.9  
基金资助:中国科学院A类战略性先导科技专项项目No.XDA13040500和国家科技基础条件平台–国家材料环境腐蚀平台项目No.2005DKA10400 CT-2-02
作者简介:

作者简介 于利宝,男,1990年生,硕士生

图1  灭菌和接菌2种红壤环境中浸泡60 d后X80管线钢表面腐蚀产物形貌的SEM像
Position O Al Si Fe S
I 42.41 9.64 13.42 34.53 -
II 34.52 9.95 18.37 24.49 12.67
表1  图1c和f中I和II点腐蚀产物的EDS分析
图2  在灭菌和接菌2种红壤环境中浸泡60 d去除腐蚀产物后X80管线钢表面的SEM像
图3  硫酸盐还原菌(SRB)数量NSRB随时间变化的生长曲线
图4  灭菌和接菌2种红壤环境中X80管线钢开路电位EOCP随时间的变化曲线
图5  灭菌和接菌2种红壤环境中X80管线钢试样线性极化电阻RLPR及其倒数RLPR-1随时间的变化曲线
图6  X80管线钢在灭菌和接菌2种红壤环境中浸泡30 d后的循环极化曲线
图7  玻碳电极在灭菌和接菌2种红壤环境中浸泡30 d后的循环伏安曲线
图8  在灭菌和接菌2种红壤环境中浸泡不同时间后X80管线钢的电化学阻抗谱
图9  用于EIS数据拟合的等效电路模型
Time Rs Yf nf Rf Ydl ndl Rct
d Ωcm2 Ssncm-2 Ωcm2 Ssncm-2 Ωcm2
1 672.3 1.014×10-4 0.7892 485 1.638×10-4 0.8574 2823
5 1008.0 9.166×10-5 0.6360 3286 1.515×10-4 0.9000 5128
10 1106.0 8.815×10-5 0.6193 4340 2.138×10-4 0.9384 5827
15 1096.0 9.105×10-5 0.6096 4413 2.613×10-4 0.9487 6170
30 1028.0 8.345×10-5 0.6250 4596 3.791×10-4 0.8994 6995
45 967.2 8.799×10-5 0.6151 4860 4.594×10-4 0.9185 6732
60 906.4 8.177×10-5 0.6334 4324 5.172×10-4 0.8870 6563
表2  灭菌土红壤中EIS拟合结果
Time Rs Yf nf Rf Ydl ndl Rct
d Ωcm2 Ssncm-2 Ωcm2 Ssncm-2 Ωcm2
1 399.4 1.321×10-4 0.7552 512 1.413×10-4 0.7853 2541
5 616.1 1.331×10-4 0.6525 3443 1.579×10-4 0.8977 5279
10 493.5 1.811×10-4 0.7243 440 3.971×10-4 0.7445 6052
15 466.1 6.576×10-4 0.7223 396 9.841×10-4 0.7988 5962
30 462.4 1.412×10-3 0.6871 542 1.712×10-3 0.7881 6025
45 433.6 2.391×10-3 0.6605 604 2.453×10-3 0.8748 6174
60 427.8 2.551×10-3 0.6863 652 3.471×10-3 0.8566 6292
表3  接菌土红壤中EIS拟合结果
图10  X80管线钢在灭菌和接菌2种红壤环境中的土壤电阻Rs、极化电阻Rp及Rp-1随时间的变化曲线
图11  实验结束后无菌和接菌2种红壤的土样照片
图12  含SRB红壤中管线钢腐蚀反应示意图
[1] Hamilton W A.Sulphate-reducing bacteria and anaerobic corrosion[J]. Annu. Rev. Microbiol., 1985, 9: 195
[2] Usher K M, Kaksonen A H, Cole I, et al.Critical review: Microbially influenced corrosion of buried carbon steel pipes[J]. Int. Biodeter. Biodegr., 2014, 93: 84
[3] Shi X B, Xu D K, Yan M C, et al.Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels[J]. Acta Metall. Sin., 2017, 53: 153(史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53: 153)
[4] Kuang F, Wang J, Yan L, et al.Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel[J]. Electrochim. Acta, 2007, 52: 6084
[5] von Wolzogen Kuhr C A H. Unity of anaerobic and aerobic iron corrosion process in the soil[J]. Corrosion, 1961, 17: 293t
[6] Iversen A.Microbially influenced corrosion on stainless steel in waste water treatment plants: Part 2[J]. Br. Corros. J., 2001, 36: 284
[7] Dinh H T, Kuever J, Mu?mann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
[8] Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435: 1098
[9] Xu D K, Gu T Y.Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm[J]. Int. Biodeter. Biodegr., 2014, 91: 74
[10] Enning D, Garrelfs J.Corrosion of iron by sulfate-reducing bacteria: New views of an old problem[J]. Appl. Environ. Microbiol., 2014, 80: 1226
[11] Lovley D R.Dissimilatory metal reduction[J]. Annu. Rev. Microbiol., 1993, 47: 263
[12] Lovley D R. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Microbiol. Rev., 1991, 55: 259
[13] Lovley D R. Organic matter mineralization with the reduction of ferric iron: A review[J]. Geomicrobiol. J., 1987, 5: 375
[14] Liu D, Dong H, Bishop M E, et al.Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium[J]. Geobiology, 2012, 10: 150
[15] Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proc. Natl. Acad. Sci. USA, 2006, 103: 11358
[16] Li Y L, Vali H, Sears S K, et al.Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium[J]. Geochim. Cosmochim. Acta, 2004, 68: 3251
[17] Cao C N.Material Natural Environment Corrosion in China [M]. Beijing: Chemical Industry Press, 2005: 87(曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005: 87)
[18] Xu R K, Zhao A Z, Li Q M, et al.Acidity regime of the Red Soils in a subtropical region of southern China under field conditions[J]. Geoderma, 2003, 115: 75
[19] Yan M C, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[20] Yan M C, Sun C, Dong J H, et al.Electrochemical investigation on steel corrosion in iron-rich clay[J]. Corros. Sci., 2015, 97: 62
[21] Coleman M L, Hedrick D B, Lovley D R, et al.Reduction of Fe(III) in sediments by sulphate-reducing bacteria[J]. Nature, 1993, 361: 436
[22] Iversen A.Microbially influenced corrosion on stainless steels in waste water treatment plants: Part 1[J]. Br. Corros. J., 2001, 36: 277
[23] Yu L, Duan J Z, Du X Q, et al.Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J]. Electrochem. Commun., 2013, 26: 101
[24] Yu L, Duan J Z, Zhao W, et al.Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041
[25] Feliu V, González J A, Andrade C, et al.Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions[J]. Corros. Sci., 1998, 40: 975
[26] Barbalat M, Lanarde L, Caron D, et al.Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55: 246
[27] Erable B, Du?eanu N M, Ghangrekar M M, et al.Application of electro-active biofilms[J]. Biofouling, 2010, 26: 57
[28] Yan M C, Sun C, Xu J, et al.Electrochemical behavior of API X80 steel in acidic soils from southeast China[J]. Int. J. Electrochem. Sci., 2015, 10: 1762
[29] Bo R, Kosec T, Kranjc A, et al.Electrochemical impedance spectroscopy of pure copper exposed in bentonite under oxic conditions[J]. Electrochim. Acta, 2011, 56: 7862
[30] Li C, Du C W, Liu Z Y, et al.Characteristics of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated acidic soil[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 377(李超, 杜翠薇, 刘智勇等. X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2011, 31: 377)
[31] Xu R K, Zhao A Z, Li Q M, et al.Acidity regime of the Red Soils in a subtropical region of southern China under field conditions[J]. Geoderma, 2003, 115: 75
[32] Yan M C, Sun C, Xu J, et al.Anoxic corrosion behavior of pipeline steel in acidic soils[J]. Ind. Eng. Chem. Res., 2014, 53: 17615
[33] Bockheim J G, Mazhitova G, Kimble J M, et al.Controversies on the genesis and classification of permafrost-affected soils[J]. Geoderma, 2006, 137: 33
[34] Gotoh S, Patrick Jr W H. Transformation of iron in a waterlogged soil as influenced by redox potential and pH[J]. Soil Sci. Soc. Am. J., 1974, 38: 66
[35] Patrick Jr W H, Henderson R E. Reduction and reoxidation cycles of manganese and iron in flooded soil and in water solution[J]. Soil Sci. Soc. Am. J., 1981, 45: 855
[36] Li Y L, Vali H, Yang J, et al.Reduction of iron oxides enhanced by a sulfate-reducing bacterium and biogenic H2S[J]. Geomicrobiol. J., 2006, 23: 103
[37] Michel C, Brugna M, Aubert C, et al.Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases[J]. Appl. Microbiol. Biotechnol., 2001, 55: 95
[38] Tebo B M, Obraztsova A Y.Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors[J]. FEMS Microbiol. Lett., 1998, 162: 193
[39] Bond D R, Lovley D R.Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Appl. Environ. Microbiol., 2003, 69: 1548
[40] Holmes D E, Bond D R, Lovley D R.Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes[J]. Appl. Environ. Microbiol., 2004, 70: 1234
[41] Zhang J C, Xun W B, Zhu Z, et al.Influence of long-term fertilizer treatments on the fluorescence spectroscopic characterization of DOM leached by acid rain from red soil[J]. Soil Sci., 2013, 178: 639
[42] Luu Y S, Ramsay J A.Review: Microbial mechanisms of accessing insoluble Fe(III) as an energy source[J]. World J. Microbiol. Biotechnol., 2003, 19: 215
[43] Rabaey K, Rodríguez J, Blackall L L, et al.Microbial ecology meets electrochemistry: Electricity-driven and driving communities[J]. ISME J., 2007, 1: 9
[44] Tugel J B, Hines M E, Jones G E.Microbial iron reduction by enrichment cultures isolated from estuarine sediments[J]. Appl. Environ. Microbiol., 1986, 52: 1167
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[6] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[7] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[8] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[9] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[10] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[11] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[12] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[13] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[14] 赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
[15] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.