|
|
利用管状试样测试各向异性材料双向应力状态力学性能的新方法 |
林艳丽1, 何祝斌2, 初冠南1( ), 闫永达3 |
1 哈尔滨工业大学(威海)材料科学与工程学院 威海 264209 2 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 3 哈尔滨工业大学精密工程研究所 哈尔滨 150001 |
|
A New Method for Directly Testing the Mechanical Properties of Anisotropic Materials in Bi-Axial Stress State by Tube Bulging Test |
Yanli LIN1, Zhubin HE2, Guannan CHU1( ), Yongda YAN3 |
1 School of Materials Science & Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China; 2 School of Materials Science & Engineering, Harbin Institute of Technology, Harbin 150001, China; 3 Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
Yanli LIN,
Zhubin HE,
Guannan CHU,
Yongda YAN.
A New Method for Directly Testing the Mechanical Properties of Anisotropic Materials in Bi-Axial Stress State by Tube Bulging Test[J]. Acta Metall Sin, 2017, 53(9): 1101-1109.
[1] | Chu E, Xu Y.Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling and bursting analyses of aluminum tubes[J]. Int. J. Mech. Sci., 2004, 46: 263 | [2] | Liu J A.Make great efforts to develop aluminum parts industry and promote the modernization progress of automobile industry[J]. Alum. Fabricat., 2005, (3): 8(刘静安. 大力发展铝合金零部件产业促进汽车工业的现代化进程[J]. 铝加工, 2005, (3): 8) | [3] | Zhu J F.Aluminum alloy used for automobile outer panel at abroad[J]. Metall. Inform. Rev., 2005, (1): 25(朱久发. 国外汽车面板用铝合金材料[J]. 冶金信息导刊, 2005, (1): 25) | [4] | Zhong Q, Shi Y, Liu B.The application of aluminum alloy in automotive light weighting[J]. Adv. Mater. Ind., 2015, (2): 23(钟奇, 施毅, 刘博. 铝合金在汽车轻量化中的应用[J]. 新材料产业, 2015, (2): 23) | [5] | Zhang L X, Chen W Z, Zhang W C, et al.Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi-pass rolling with lowered temperature[J]. J. Mater. Process. Technol., 2016, 237: 65 | [6] | Kuwabara T, Yoshida K, Narihara K, et al.Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure[J]. Int. J. Plast., 2005, 21: 101 | [7] | Jansson M, Nilsson L, Simonsson K.On constitutive modeling of aluminum alloys for tube hydroforming applications[J]. Int. J. Plast., 2005, 21: 1041 | [8] | Kuwabara T, Sugawara F.Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range[J]. Int. J. Plast., 2013, 45: 103 | [9] | Fuchizawa S, Narazaki M.Bulge test for determining stress-strain characteristics of thin tubes [A]. Advanced Technology of Plasticity Proceedings of Fourth ICTP[C]. Beijing China: ICTP, 1993: 488 | [10] | Hwang Y M, Lin Y K, Altan T.Evaluation of tubular materials by a hydraulic bulge test[J]. Int. J. Mach. Tool Manuf., 2007, 47: 343 | [11] | Hwang Y M, Lin Y K.Evaluation of flow stresses of tubular materials considering anisotropic effects by hydraulic bulge tests[J]. J. Eng. Mater. Technol., 2007, 129: 414 | [12] | Hwang Y M, Wang C W.Flow stress evaluation of zinc copper and carbon steel tubes by hydraulic bulge tests considering their anisotropy[J]. J. Mater. Process. Technol., 2009, 209: 4423 | [13] | Bortot P, Ceretti E, Giardini C.The determination of flow stress of tubular material for hydroforming applications[J]. J. Mater. Process. Technol., 2008, 203: 381 | [14] | Velasco R, Boudeau N.Tube bulging test: Theoretical analysis and numerical validation[J]. J. Mater. Process. Technol., 2008, 205: 51 | [15] | He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging test, Part I: Models for stress components and bulgingzone profile[J]. Int. J. Mech. Sci., 2014, 87: 297 | [16] | He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging tests, Part II: Linear model for pole thickness and its application[J]. Int. J. Mech. Sci., 2014, 87: 307 | [17] | Yang L F, Guo C.Determination of stress-strain relationship of tubular material with hydraulic bulge test[J]. Thin Wall. Struct., 2008, 46: 147 | [18] | Tirosh J, Neubrger A, Shirizly A.On tube expansion by internal fluid pressure with additional compressive stress[J]. Int. J. Mech. Sci., 1996, 38: 839 | [19] | Strano M, Altan T.An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications[J]. J. Mater. Process. Technol., 2004, 146: 92 | [20] | Li S G.Foundamental study on tube hydroforming process [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(李泷杲. 金属薄壁管液压成形应用基础研究 [D]. 南京: 南京航空航天大学, 2007) | [21] | Hosford W F.Comments on anisotropic yield criteria[J]. Int. J. Mech. Sci., 1985, 27: 423 | [22] | Logan R, Hosford W F.Upper-bound anisotropic yield locus calculations assuming <111>-pencil glide[J]. Int. J. Mech. Sci., 1980, 22: 430 | [23] | Barlat F, Brem J C, Yoon J W, et al.Plane stress yield function for aluminum alloy sheets——Part 1: Theory[J]. Int. J. Plast., 2003, 19: 1297 | [24] | Banabic D.Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation[M]. Berlin: Springer, 2010: 77 | [25] | Hu W L, Lin Y L, Yuan S J, et al. Constitutive models for regression of various experimental stress-strain relations [J]. Int. J. Mech. Sci., 2015, 101-102: 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|