Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1101-1109    DOI: 10.11900/0412.1961.2017.00074
  本期目录 | 过刊浏览 |
利用管状试样测试各向异性材料双向应力状态力学性能的新方法
林艳丽1, 何祝斌2, 初冠南1(), 闫永达3
1 哈尔滨工业大学(威海)材料科学与工程学院 威海 264209
2 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
3 哈尔滨工业大学精密工程研究所 哈尔滨 150001
A New Method for Directly Testing the Mechanical Properties of Anisotropic Materials in Bi-Axial Stress State by Tube Bulging Test
Yanli LIN1, Zhubin HE2, Guannan CHU1(), Yongda YAN3
1 School of Materials Science & Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China;
2 School of Materials Science & Engineering, Harbin Institute of Technology, Harbin 150001, China;
3 Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
Yanli LIN, Zhubin HE, Guannan CHU, Yongda YAN. A New Method for Directly Testing the Mechanical Properties of Anisotropic Materials in Bi-Axial Stress State by Tube Bulging Test[J]. Acta Metall Sin, 2017, 53(9): 1101-1109.

全文: PDF(2174 KB)   HTML
  
摘要: 

为解决各向异性材料双向加载性能测试理论模型存在的测试物理量过多且实测困难的问题,提出了一种采用管状试样胀形直接测试双向加载力学性能的新方法:一点法。利用圆几何轮廓线为显性函数表达式的特征,推导了胀形过程中最高点轴向曲率半径和壁厚理论模型。仅需在胀形过程中测量最高点胀形高度,即可获得材料双向加载下的力学性能,为建立一个简单可靠且能在线实时测量的材料力学性能测试方法奠定了基础。并利用所建立的测试方法进行了AA6061铝合金挤压管坯的胀形实验。结果表明:管坯自由胀形时,其最高点实时壁厚和曲率半径均可表示为最高点胀形高度的显示函数。轮廓形状理论模型的预测精度随膨胀率的增大先提高后降低,膨胀率约为13%时预测精度最高,当膨胀率超过20%后,预测精度开始下降,但最大误差不超过±0.9%。最高点实时壁厚理论模型的预测精度基本不受试件几何尺寸的影响,长径比和径厚比改变时,差异很小,预测误差均不超过0.8%,这对保证双向加载条件下的力学性能测试精度是非常有益的。一点法可同时测得环向和轴向的应力应变分量,这为进一步分析各向异性对复杂应力状态下材料的流动及后继屈服奠定了基础。

关键词 铝合金挤压管各向异性胀形实验应力-应变曲线双向应力状态    
Abstract

Due to the increasing demands for lightweight parts in various fields, such as bicycle, automotive, aircraft and aerospace industries, hydroforming processes have become popular in recent years. Since tubular materials during tube hydroforming are under a bi-axial even tri-axial stress state, which is different from that in the tensile test, it is necessary to test the mechanical properties of the material under bi-axial stress state. Tube bulging test is an advanced method for characterizing the mechanical properties of tubular materials under bi-axial stress state. But there are excessive physical quantities in the theoretical model of tube bulging test for testing the mechanical properties of tubes under bi-axial stress state which are difficult to be obtained during the experiment. In order to solve the problems, a method for directly testing the mechanical properties of tubes under bi-axial stress state was proposed in this work, which will be referred to as "one point method". Because of circular model is characterized by a dominant function expression, theoretical models of both the pole axial curvature radius and the pole thickness during bulging test are derived under supposing the geometrical models for bulging zone as circular. Thus, the mechanical properties of tubes under bi-axial stress state can be obtained only through measuring the bulging height at the pole point during the bulging test, which laid the foundation for the establishment of a simple and reliable method for testing the mechanical properties of the tube online. Based on the above proposed method, the extruded aluminum alloy tubes AA6061 were tested. The results showed that both the pole axial curvature radius and the pole thickness during bulging test can be expressed as display functions pertaining to the bulging height at the pole point. For the theoretical model of the pole axial curvature radius, as the bulging rate increases, the prediction accuracy increases at beginning, and decreases at the end when using circular as the theoretical geometrical models for bulging zone. The prediction accuracy is the highest as the bulging rate is about 13%, the prediction accuracy decreases after the bulging rate is more than 20%. Fortunately, the overall prediction error is small. The maximum error does not exceed ±0.9%. The prediction accuracy of the pole thickness using the theoretical model is almost unaffected by the specimen geometry. When the ratios of length to diameter and diameter to thickness change, the difference is very small, the prediction error is not more than 0.8%. This is very helpful to ensure the accuracy of mechanical testing under bi-axial loading conditions. Using the "one point method", the stress and strain components along the circumferential and axial directions can be simultaneously measured, this laid the foundation for further analysis of the anisotropic property impacting on the flow and subsequent yield under complex stress state.

Key wordsaluminum alloy extruded tube    anisotropy    tube bulging test    stress-strain curve    bi-axial stress state
收稿日期: 2017-03-07     
ZTFLH:  TG394  
基金资助:国家自然科学基金项目Nos.51405102和51475121,中国博士后科学基金项目No.2015M570286,中央高校基本科研业务费专项资金项目No.HIT.NSRIF.2016093及哈尔滨工业大学(威海)校科学研究基金项目No.HIT(WH)201414
作者简介:

作者简介 林艳丽,女,1982年生,讲师

图1  管状试样胀形实验原理及几何参数定义
图2  轮廓线相切圆几何关系示意图
图3  一点法测试材料流动应力-应变曲线的理论算法流程图
图4  不同长径比AA6061铝合金管材胀形后照片
图5  胀形管材轮廓线测量示意图
图6  实验测量及理论分析所得的不同长径比AA6061 铝合金管材胀形后管坯轮廓线
图7  不同长径比AA6061 铝合金管材胀形过程中轮廓线相切圆模型误差分析
λ=L0/D0 δ=D0/t0 D0 / mm L0 / mm t0 / mm
1.6 27.8 50 80 1.8
2.0 27.8 50 100 1.8
1.6 33.3 60 96 1.8
1.8 33.3 60 108 1.8
2.0 33.3 60 120 1.8
表1  AA6061管材胀形实验方案
图8  不同长径比时最高点壁厚与胀形高度的实验结果
图9  不同长径比时最高点壁厚与胀形高度的误差分析
图10  不同初始外径时最高点壁厚与胀形高度的实验结果
图11  不同初始外径时最高点壁厚与胀形高度的误差分析
图12  胀形高度随胀形内压的变化关系曲线
图13  流动应力-应变分量曲线
图14  AA6061铝合金管材等效应力-应变曲线
[1] Chu E, Xu Y.Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling and bursting analyses of aluminum tubes[J]. Int. J. Mech. Sci., 2004, 46: 263
[2] Liu J A.Make great efforts to develop aluminum parts industry and promote the modernization progress of automobile industry[J]. Alum. Fabricat., 2005, (3): 8(刘静安. 大力发展铝合金零部件产业促进汽车工业的现代化进程[J]. 铝加工, 2005, (3): 8)
[3] Zhu J F.Aluminum alloy used for automobile outer panel at abroad[J]. Metall. Inform. Rev., 2005, (1): 25(朱久发. 国外汽车面板用铝合金材料[J]. 冶金信息导刊, 2005, (1): 25)
[4] Zhong Q, Shi Y, Liu B.The application of aluminum alloy in automotive light weighting[J]. Adv. Mater. Ind., 2015, (2): 23(钟奇, 施毅, 刘博. 铝合金在汽车轻量化中的应用[J]. 新材料产业, 2015, (2): 23)
[5] Zhang L X, Chen W Z, Zhang W C, et al.Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi-pass rolling with lowered temperature[J]. J. Mater. Process. Technol., 2016, 237: 65
[6] Kuwabara T, Yoshida K, Narihara K, et al.Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure[J]. Int. J. Plast., 2005, 21: 101
[7] Jansson M, Nilsson L, Simonsson K.On constitutive modeling of aluminum alloys for tube hydroforming applications[J]. Int. J. Plast., 2005, 21: 1041
[8] Kuwabara T, Sugawara F.Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range[J]. Int. J. Plast., 2013, 45: 103
[9] Fuchizawa S, Narazaki M.Bulge test for determining stress-strain characteristics of thin tubes [A]. Advanced Technology of Plasticity Proceedings of Fourth ICTP[C]. Beijing China: ICTP, 1993: 488
[10] Hwang Y M, Lin Y K, Altan T.Evaluation of tubular materials by a hydraulic bulge test[J]. Int. J. Mach. Tool Manuf., 2007, 47: 343
[11] Hwang Y M, Lin Y K.Evaluation of flow stresses of tubular materials considering anisotropic effects by hydraulic bulge tests[J]. J. Eng. Mater. Technol., 2007, 129: 414
[12] Hwang Y M, Wang C W.Flow stress evaluation of zinc copper and carbon steel tubes by hydraulic bulge tests considering their anisotropy[J]. J. Mater. Process. Technol., 2009, 209: 4423
[13] Bortot P, Ceretti E, Giardini C.The determination of flow stress of tubular material for hydroforming applications[J]. J. Mater. Process. Technol., 2008, 203: 381
[14] Velasco R, Boudeau N.Tube bulging test: Theoretical analysis and numerical validation[J]. J. Mater. Process. Technol., 2008, 205: 51
[15] He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging test, Part I: Models for stress components and bulgingzone profile[J]. Int. J. Mech. Sci., 2014, 87: 297
[16] He Z B, Yuan S J, Lin Y L, et al.Analytical model for tube hydro-bulging tests, Part II: Linear model for pole thickness and its application[J]. Int. J. Mech. Sci., 2014, 87: 307
[17] Yang L F, Guo C.Determination of stress-strain relationship of tubular material with hydraulic bulge test[J]. Thin Wall. Struct., 2008, 46: 147
[18] Tirosh J, Neubrger A, Shirizly A.On tube expansion by internal fluid pressure with additional compressive stress[J]. Int. J. Mech. Sci., 1996, 38: 839
[19] Strano M, Altan T.An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications[J]. J. Mater. Process. Technol., 2004, 146: 92
[20] Li S G.Foundamental study on tube hydroforming process [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(李泷杲. 金属薄壁管液压成形应用基础研究 [D]. 南京: 南京航空航天大学, 2007)
[21] Hosford W F.Comments on anisotropic yield criteria[J]. Int. J. Mech. Sci., 1985, 27: 423
[22] Logan R, Hosford W F.Upper-bound anisotropic yield locus calculations assuming <111>-pencil glide[J]. Int. J. Mech. Sci., 1980, 22: 430
[23] Barlat F, Brem J C, Yoon J W, et al.Plane stress yield function for aluminum alloy sheets——Part 1: Theory[J]. Int. J. Plast., 2003, 19: 1297
[24] Banabic D.Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation[M]. Berlin: Springer, 2010: 77
[25] Hu W L, Lin Y L, Yuan S J, et al. Constitutive models for regression of various experimental stress-strain relations [J]. Int. J. Mech. Sci., 2015, 101-102: 1
[1] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[2] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[3] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[4] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[5] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[6] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[7] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[8] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[9] 王莉,何禹锋,申健,郑伟,楼琅洪,张健. 第二取向对第三代单晶高温合金热疲劳过程中冷却孔孔周氧化行为的影响研究[J]. 金属学报, 2019, 55(11): 1417-1426.
[10] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] 马晓琴, 詹清峰, 李金财, 刘青芳, 王保敏, 李润伟. 倾斜溅射对CoFeB薄膜条纹磁畴结构与磁各向异性的影响[J]. 金属学报, 2018, 54(9): 1281-1288.
[12] 黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用[J]. 金属学报, 2018, 54(7): 1077-1086.
[13] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[14] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[15] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.