Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1065-1074    DOI: 10.11900/0412.1961.2017.00005
  本期目录 | 过刊浏览 |
连续点式锻压激光快速成形TC11钛合金的组织和力学性能
席明哲(), 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友
燕山大学先进锻压成形技术与科学教育部重点实验室 秦皇岛 066004
Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging
Mingzhe XI(), Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education, Yanshan University, Qinhuangdao 066004, China
引用本文:

席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging[J]. Acta Metall Sin, 2017, 53(9): 1065-1074.

全文: PDF(14857 KB)   HTML
摘要: 

采用连续点式锻压激光快速成形技术进行了TC11钛合金厚壁零件成形实验,利用OM、SEM等手段研究了连续点式锻压激光快速成形TC11钛合金的组织和力学性能。结果表明,TC11钛合金试样内部的等轴晶晶粒尺寸均匀,平均晶粒尺寸48.7 μm。等轴晶的晶界α相连续,晶内是初生α相板条+β转变组织组成的双态组织。在连续点式锻压激光快速成形过程中,连续点式锻压时,TC11钛合金厚壁零件的表层变形区深度约为1.5 mm,变形量为20%。在连续点式锻压冷变形TC11钛合金上表面沉积新层过程中,当激光束扫描经过时,熔池热影响区中约1 mm厚(4层)冷变形TC11钛合金被加热到钛合金β转变温度之上,并在0.86 s内完成再结晶。力学性能结果表明,与TC11钛合金锻件相比,连续点式锻压激光快速成形的TC11钛合金的强度高,而塑性低。断口形貌分析表明,晶间断裂是导致TC11钛合金塑性差的主要原因。

关键词 连续点式锻压激光快速成形TC11钛合金显微组织拉伸性能    
Abstract

The titanium alloy parts, which have been formed by traditional laser additive manufacturing (LAM) method, usually have obviously different microstructure from wrought microstructure of titanium alloy and show room temperature mechanical anisotropy. In order to make the LAMed titanium alloy parts get the same microstructure and mechanical properties as wrought titanium alloy, a new technology of LAM called consecutive point-mode forging and laser rapid forming (CPF-LRF) has been proposed. During CPF-LRF process, deposited TC11 titanium alloy by laser rapid forming (LRF) was deformed by consecutive point-mode forging (CPF), and then on the surface of the deformed TC11 titanium alloy, new LRF process started over again. Both LRF and CPF were performed alternatively throughout the process of the fabrication of a TC11 titanium alloy part. Microstructures and mechanical properties of the CPF-LRFed TC11 alloy sample have been investigated. The average grain size of equiaxed grains of the CPF-LRFed TC11 alloy sample is 48.7 μm. The equiaxed grains have continuous grain boundary α phase. The microstructure of the equiaxed grain is bimodal microstructure consisting of primary α phase lath and transformed β. During CPF-LRF process, being plastically deformed by CPF, the surface deformation zone of the thick-wall TC11 titanium alloy part is 1.5 mm depth and its deformation degree is 20%. During a new layer deposited on the surface of the CPF cold deformed TC11 titanium alloy part, when laser beam scans through, about 1 mm thick (four layers) cold deformed titanium alloy in the heat affected zone of laser melting pool is heated up above β-transus temperature of TC11 titanium alloy in which static recrystallization complete within time interval of 0.86 s. The mechanical properties indicate that compared with the tensile properties at room temperature of TC11 alloy forged piece, the CPF-LRFed TC11 alloy has higher strength and less ductility. Fracture analysis indicates that intergranular fracture is mainly responsible for the poor ductility of CPF-LRFed TC11 alloy.

Key wordsconsecutive point-mode forging    laser rapid forming    TC11 titanium alloy    microstructure    tensile property
收稿日期: 2017-01-06     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目Nos.51375426和51375425
作者简介:

作者简介 席明哲,男,1968年生,教授,博士

图1  连续点式锻压激光快速成形(CPF-LRF)技术过程示意图
图2  拉伸试样的取样位置和拉伸试样尺寸
图3  TC11钛合金试样xz截面的OM像
图4  CPF-LRF制备的TC11钛合金试样xz截面上(N+4)~(N-1)层的SEM像
图5  CPF-LRF制备的 TC11钛合金试样xz截面顶部8层显微硬度
图6  CPF-LRF制备的TC11钛合金试样的拉伸断口形貌
Manufacturing method σs / MPa σb / MPa Elongation / %
CPF-LRFed 1040±12 1146±11 6.2±0.8
β forged[25]
α+β forged[25]
1020
985
1110
1043
9.7
15.3
表1  CPF-LRF制备的TC11钛合金拉伸力学性能
图7  CPF-LRF制备的TC11钛合金室温拉伸应力-应变曲线
图8  刚性平冲头压入半无限高坯料的滑移线场
图9  CPF-LRF过程中TC11钛合金b晶粒形貌演变示意图
[1] Song H W, Zhang S H, Cheng M.Subtransus deformation mechanisms of TC11 titanium alloy with lamellar structure[J]. Nonferrous Met. Soc. China., 2010, 20: 2168
[2] Hua Y Q, Bai Y C, Ye Y X, et al.Hot corrosion behavior of TC11 titanium alloy treated by laser shock processing[J]. Appl. Surf. Sci., 2013, 283: 775
[3] Zhao W Q, Chen J, Yang J Q, et al.Influences of Laser Solid Forming Process on Microstructure and Mechanical Properties of TC11 Titanium Alloy[J]. Appl. Laser., 2012, 32: 479(赵卫强, 陈静, 杨杰穷等. 激光立体成形工艺对TC11钛合金组织和力学性能的影响[J]. 应用激光, 2012, 32: 479)
[4] Huang Y, Chen J, Zhang F Y, et al.Influence of heat treatment on microstructure of laser solid forming Ti-6.5Al-3.5Mo-1.5Zr-0.25Si alloys[J]. Rare Met. Mater. Eng., 2009, 38: 2146(黄瑜, 陈静, 张凤英等. 热处理对激光立体成形 TC11 钛合金组织的影响[J]. 稀有金属材料与工程, 2009, 38: 2146)
[5] Song H W, Zhang S H, Chen M.Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure[J]. Def. Technol., 2014, 10: 40
[6] Liu F C, Lin X, Zhao W W.Effects of Solution Treatment Temperature on Micro-structures and Properties of Laser Solid Forming GH4169 Superalloy[J]. Rare Met. Mater. Eng., 2010, 39: 1519
[7] Wang Y D, Tang H B, Fang Y L, et al.Microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A527: 4804
[8] Zhang Q, Chen J, Lin X, et al.Grain morphology control and texture characterization of laser solid Formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb titanium alloy[J]. J. Mater. Process. Technol., 2016, 238: 202
[9] Zhang Q, Yao J, Mazumder J.Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy[J]. J. Iron. Steel Res. Int., 2011, 18: 73
[10] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[11] Wu X, Liang J, Mei J, et al.Microstructures of laser deposited Ti-6Al-4V[J]. Mater. Des., 2004, 25: 137
[12] Kobryn P A, Semiatin S L.Microstructure and texture evolution during solidification processing of Ti-6Al-4V[J]. J. Mater. Process. Technol., 2003, 135: 330
[13] Kelly S M, Kampe S L.Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metall. Mater. Trans., 2004, 35A: 1861
[14] Mok S H, Bi G, Folkes J, et al.Deposition of Ti-6Al-4V using a high powerdiode laser and wire, Part I: Investigation on the process characteristics[J]. Surf. Coat. Technol., 2008, 202: 3933
[15] Xi M Z, Zhou W, Shang J Y, et al.Effect of heat treatment on microstructure and mechanical properties of consecutive point-mode forging and laser rapid forming GH4169 alloy[J]. Acta Metall. Sin., 2017, 2: 239(席明哲, 周玮, 尚俊英等. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J].金属学报, 2017, 2: 239)
[16] Ren H S, Tian X J, Liu D, et al.Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1856
[17] Ren H S, Liu D, Tang H B, et al.Microstructure and mechanical properties of a graded structural material[J]. Mater. Sci. Eng., 2014, A611: 362
[18] Zhu Y Y, Tian X J, Li J, et al.Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. J. Alloys Compd., 2014, 616: 468
[19] Wang F, Williams S, Colegrave P, et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metall. Mater. Trans., 2013, 44A: 968
[20] Kampe S L, Kelly S M.Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metall. Mater. Trans., 2014, 35A: 1861
[21] Ivasishin O M, Markovsky P E, Matviychuk Y V, et al.A comparative study of the mechanical properties of high-strength -titanium alloys[J]. J. Alloys Compd., 2008, 457: 296
[22] Liu C M, Wang H M, Tian X J, et al.Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Mater. Sci. Eng., 2013, A586: 323
[23] Yang Y, Xu F, Huang A J, et al.Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α+β phase field[J]. Acta Metall. Sin., 2005, 41: 713(杨义, 徐峰, 黄爱军等. 全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J]. 金属学报, 2005, 41: 713)
[24] Liu C M, Wang H M, Tian X J, et al.Development of a pre-heat treatment for obtaining discontinuous grain boundary α in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J]. Mater. Sci. Eng., 2014, A604: 176
[25] Zhu H, Liao H.Effect of forging temperature on microstructure and mechanical properties of TC11 titanium alloy[J]. Hot Working Technol., 2013, 42: 127(朱红, 廖鸿. 锻造温度对TC11钛合金组织和性能的影响[J]. 热加工工艺, 2013, 42: 127)
[26] Zhao D W, Liu X H, Wang G D.A direct demonstration to consistency of slip line solution with minimum upper-bound solution[J]. J. Northeast Univ., 1994, 15: 189(赵德文, 刘相华, 王国栋. 滑移线解与最小上界解一致的证明[J]. 东北大学学报, 1994, 15: 189)
[27] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[28] Xi M Z, Liu J B, Zhao Y, et al.Microstructures of heat treatment and properties of TA15 titanium alloy formed by the technology of laser rapid forming combined with continuous point forging[J].Chin. J. Lasers, 2016, 43: 0203001-1(席明哲, 刘静波, 赵毅等. 连续点式锻压激光快速成形TA15钛合金热处理组织与性能[J]. 中国激光, 2016, 43: 0203001-1)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.