Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1065-1074    DOI: 10.11900/0412.1961.2017.00005
  本期目录 | 过刊浏览 |
连续点式锻压激光快速成形TC11钛合金的组织和力学性能
席明哲(), 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友
燕山大学先进锻压成形技术与科学教育部重点实验室 秦皇岛 066004
Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging
Mingzhe XI(), Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education, Yanshan University, Qinhuangdao 066004, China
全文: PDF(14857 KB)   HTML
摘要: 

采用连续点式锻压激光快速成形技术进行了TC11钛合金厚壁零件成形实验,利用OM、SEM等手段研究了连续点式锻压激光快速成形TC11钛合金的组织和力学性能。结果表明,TC11钛合金试样内部的等轴晶晶粒尺寸均匀,平均晶粒尺寸48.7 μm。等轴晶的晶界α相连续,晶内是初生α相板条+β转变组织组成的双态组织。在连续点式锻压激光快速成形过程中,连续点式锻压时,TC11钛合金厚壁零件的表层变形区深度约为1.5 mm,变形量为20%。在连续点式锻压冷变形TC11钛合金上表面沉积新层过程中,当激光束扫描经过时,熔池热影响区中约1 mm厚(4层)冷变形TC11钛合金被加热到钛合金β转变温度之上,并在0.86 s内完成再结晶。力学性能结果表明,与TC11钛合金锻件相比,连续点式锻压激光快速成形的TC11钛合金的强度高,而塑性低。断口形貌分析表明,晶间断裂是导致TC11钛合金塑性差的主要原因。

关键词 连续点式锻压激光快速成形TC11钛合金显微组织拉伸性能    
Abstract

The titanium alloy parts, which have been formed by traditional laser additive manufacturing (LAM) method, usually have obviously different microstructure from wrought microstructure of titanium alloy and show room temperature mechanical anisotropy. In order to make the LAMed titanium alloy parts get the same microstructure and mechanical properties as wrought titanium alloy, a new technology of LAM called consecutive point-mode forging and laser rapid forming (CPF-LRF) has been proposed. During CPF-LRF process, deposited TC11 titanium alloy by laser rapid forming (LRF) was deformed by consecutive point-mode forging (CPF), and then on the surface of the deformed TC11 titanium alloy, new LRF process started over again. Both LRF and CPF were performed alternatively throughout the process of the fabrication of a TC11 titanium alloy part. Microstructures and mechanical properties of the CPF-LRFed TC11 alloy sample have been investigated. The average grain size of equiaxed grains of the CPF-LRFed TC11 alloy sample is 48.7 μm. The equiaxed grains have continuous grain boundary α phase. The microstructure of the equiaxed grain is bimodal microstructure consisting of primary α phase lath and transformed β. During CPF-LRF process, being plastically deformed by CPF, the surface deformation zone of the thick-wall TC11 titanium alloy part is 1.5 mm depth and its deformation degree is 20%. During a new layer deposited on the surface of the CPF cold deformed TC11 titanium alloy part, when laser beam scans through, about 1 mm thick (four layers) cold deformed titanium alloy in the heat affected zone of laser melting pool is heated up above β-transus temperature of TC11 titanium alloy in which static recrystallization complete within time interval of 0.86 s. The mechanical properties indicate that compared with the tensile properties at room temperature of TC11 alloy forged piece, the CPF-LRFed TC11 alloy has higher strength and less ductility. Fracture analysis indicates that intergranular fracture is mainly responsible for the poor ductility of CPF-LRFed TC11 alloy.

Key wordsconsecutive point-mode forging    laser rapid forming    TC11 titanium alloy    microstructure    tensile property
收稿日期: 2017-01-06     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目Nos.51375426和51375425
作者简介:

作者简介 席明哲,男,1968年生,教授,博士

引用本文:

席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging. Acta Metall Sin, 2017, 53(9): 1065-1074.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00005      或      https://www.ams.org.cn/CN/Y2017/V53/I9/1065

图1  连续点式锻压激光快速成形(CPF-LRF)技术过程示意图
图2  拉伸试样的取样位置和拉伸试样尺寸
图3  TC11钛合金试样xz截面的OM像
图4  CPF-LRF制备的TC11钛合金试样xz截面上(N+4)~(N-1)层的SEM像
图5  CPF-LRF制备的 TC11钛合金试样xz截面顶部8层显微硬度
图6  CPF-LRF制备的TC11钛合金试样的拉伸断口形貌
Manufacturing method σs / MPa σb / MPa Elongation / %
CPF-LRFed 1040±12 1146±11 6.2±0.8
β forged[25]
α+β forged[25]
1020
985
1110
1043
9.7
15.3
表1  CPF-LRF制备的TC11钛合金拉伸力学性能
图7  CPF-LRF制备的TC11钛合金室温拉伸应力-应变曲线
图8  刚性平冲头压入半无限高坯料的滑移线场
图9  CPF-LRF过程中TC11钛合金b晶粒形貌演变示意图
[1] Song H W, Zhang S H, Cheng M.Subtransus deformation mechanisms of TC11 titanium alloy with lamellar structure[J]. Nonferrous Met. Soc. China., 2010, 20: 2168
[2] Hua Y Q, Bai Y C, Ye Y X, et al.Hot corrosion behavior of TC11 titanium alloy treated by laser shock processing[J]. Appl. Surf. Sci., 2013, 283: 775
[3] Zhao W Q, Chen J, Yang J Q, et al.Influences of Laser Solid Forming Process on Microstructure and Mechanical Properties of TC11 Titanium Alloy[J]. Appl. Laser., 2012, 32: 479(赵卫强, 陈静, 杨杰穷等. 激光立体成形工艺对TC11钛合金组织和力学性能的影响[J]. 应用激光, 2012, 32: 479)
[4] Huang Y, Chen J, Zhang F Y, et al.Influence of heat treatment on microstructure of laser solid forming Ti-6.5Al-3.5Mo-1.5Zr-0.25Si alloys[J]. Rare Met. Mater. Eng., 2009, 38: 2146(黄瑜, 陈静, 张凤英等. 热处理对激光立体成形 TC11 钛合金组织的影响[J]. 稀有金属材料与工程, 2009, 38: 2146)
[5] Song H W, Zhang S H, Chen M.Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure[J]. Def. Technol., 2014, 10: 40
[6] Liu F C, Lin X, Zhao W W.Effects of Solution Treatment Temperature on Micro-structures and Properties of Laser Solid Forming GH4169 Superalloy[J]. Rare Met. Mater. Eng., 2010, 39: 1519
[7] Wang Y D, Tang H B, Fang Y L, et al.Microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A527: 4804
[8] Zhang Q, Chen J, Lin X, et al.Grain morphology control and texture characterization of laser solid Formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb titanium alloy[J]. J. Mater. Process. Technol., 2016, 238: 202
[9] Zhang Q, Yao J, Mazumder J.Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy[J]. J. Iron. Steel Res. Int., 2011, 18: 73
[10] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[11] Wu X, Liang J, Mei J, et al.Microstructures of laser deposited Ti-6Al-4V[J]. Mater. Des., 2004, 25: 137
[12] Kobryn P A, Semiatin S L.Microstructure and texture evolution during solidification processing of Ti-6Al-4V[J]. J. Mater. Process. Technol., 2003, 135: 330
[13] Kelly S M, Kampe S L.Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metall. Mater. Trans., 2004, 35A: 1861
[14] Mok S H, Bi G, Folkes J, et al.Deposition of Ti-6Al-4V using a high powerdiode laser and wire, Part I: Investigation on the process characteristics[J]. Surf. Coat. Technol., 2008, 202: 3933
[15] Xi M Z, Zhou W, Shang J Y, et al.Effect of heat treatment on microstructure and mechanical properties of consecutive point-mode forging and laser rapid forming GH4169 alloy[J]. Acta Metall. Sin., 2017, 2: 239(席明哲, 周玮, 尚俊英等. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J].金属学报, 2017, 2: 239)
[16] Ren H S, Tian X J, Liu D, et al.Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1856
[17] Ren H S, Liu D, Tang H B, et al.Microstructure and mechanical properties of a graded structural material[J]. Mater. Sci. Eng., 2014, A611: 362
[18] Zhu Y Y, Tian X J, Li J, et al.Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. J. Alloys Compd., 2014, 616: 468
[19] Wang F, Williams S, Colegrave P, et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metall. Mater. Trans., 2013, 44A: 968
[20] Kampe S L, Kelly S M.Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metall. Mater. Trans., 2014, 35A: 1861
[21] Ivasishin O M, Markovsky P E, Matviychuk Y V, et al.A comparative study of the mechanical properties of high-strength -titanium alloys[J]. J. Alloys Compd., 2008, 457: 296
[22] Liu C M, Wang H M, Tian X J, et al.Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Mater. Sci. Eng., 2013, A586: 323
[23] Yang Y, Xu F, Huang A J, et al.Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α+β phase field[J]. Acta Metall. Sin., 2005, 41: 713(杨义, 徐峰, 黄爱军等. 全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J]. 金属学报, 2005, 41: 713)
[24] Liu C M, Wang H M, Tian X J, et al.Development of a pre-heat treatment for obtaining discontinuous grain boundary α in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J]. Mater. Sci. Eng., 2014, A604: 176
[25] Zhu H, Liao H.Effect of forging temperature on microstructure and mechanical properties of TC11 titanium alloy[J]. Hot Working Technol., 2013, 42: 127(朱红, 廖鸿. 锻造温度对TC11钛合金组织和性能的影响[J]. 热加工工艺, 2013, 42: 127)
[26] Zhao D W, Liu X H, Wang G D.A direct demonstration to consistency of slip line solution with minimum upper-bound solution[J]. J. Northeast Univ., 1994, 15: 189(赵德文, 刘相华, 王国栋. 滑移线解与最小上界解一致的证明[J]. 东北大学学报, 1994, 15: 189)
[27] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[28] Xi M Z, Liu J B, Zhao Y, et al.Microstructures of heat treatment and properties of TA15 titanium alloy formed by the technology of laser rapid forming combined with continuous point forging[J].Chin. J. Lasers, 2016, 43: 0203001-1(席明哲, 刘静波, 赵毅等. 连续点式锻压激光快速成形TA15钛合金热处理组织与性能[J]. 中国激光, 2016, 43: 0203001-1)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[6] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[7] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[8] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[9] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[10] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[11] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[12] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[13] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[14] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[15] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.