|
|
γ-TiAl金属间化合物铣削加工实验与有限元模拟 |
周丽1,2,崔超1,贾清2( ),马英石1 |
1 沈阳理工大学机械工程学院 沈阳 110159 2 中国科学院金属研究所 沈阳 110016 |
|
Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics |
Li ZHOU1,2,Chao CUI1,Qing JIA2( ),Yingshi MA1 |
1 School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
Li ZHOU,
Chao CUI,
Qing JIA,
Yingshi MA.
Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics[J]. Acta Metall Sin, 2017, 53(4): 505-512.
[1] | Klocke F, Lung D, Arft M, et al.On high-speed turning of a third-generation gamma titanium aluminide[J]. Int. J. Adv. Manuf. Technol., 2013, 65: 155 | [2] | Boyer R R.An overview on the use of titanium in the aerospace industry[J]. Mater. Sci. Eng., 1996, A213: 103 | [3] | Liu R C, Wang Z, Liu D, et al.Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion[J]. Acta Metall. Sin., 2013, 49: 641 | [3] | (刘仁慈, 王震, 刘冬等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49: 641) | [4] | Aspinwall D K, Dewes R C, Mantle A L.The machining of γ-TiAl intermetallic alloys[J]. CIRP Ann.-Manuf. Technol., 2005, 54: 99 | [5] | Peng Y B, Chen F, Wang M Z, et al.Relationship between mechanical properties and lamellar orientation of PST crystals in Ti-45Al-8Nb alloy[J]. Acta Metall. Sin., 2013, 49: 1457 | [5] | (彭英博, 陈锋, 王敏智等. Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系[J]. 金属学报, 2013, 49: 1457) | [6] | Kad B K, Dao M, Asaro R J. Numerical simulations of stress-strain behavior in two-phase α2+γ lamellar TiAl alloys [J]. Mater. Sci. Eng., 1995, A192-193: 97 | [7] | Su J L, Lin G F, Zheng S H.Effects of grain size and lamellar thickness on yield strength of fully lamellar γ-TiAl based alloys[J]. J. Aeronaut. Mater., 2009, 29(4): 1 | [7] | (苏继龙, 林高飞, 郑书河. 晶粒尺寸和片层厚度对全片层γ-TiAl基合金屈服强度的影响[J]. 航空材料学报, 2009, 29(4): 1) | [8] | Su J L, Hu G K.Micromechanical study on yield stress and the effects of twinning for γ-TiAl-based PST crystals[J]. Acta Metall. Sin., 2005, 41: 1243 | [8] | (苏继龙, 胡更开. γ-TiAl基PST晶体的屈服应力及孪晶影响的细观力学研究[J]. 金属学报, 2005, 41: 1243) | [9] | Inui H, Oh M H, Nakamura A, et al.Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl[J]. Acta Metall. Mater., 1992, 40: 3095 | [10] | Lin J G, Zhou Y J, Zhang Y G, et al.Microstructure and high-temperature compression behavior of Ti-48Al PST crystals[J]. J. Aeronaut. Mater., 1998, 18(1): 1 | [10] | (林建国, 周亚建, 张永刚等. Ti-48Al合金PST晶体显微组织及高温压缩性能[J]. 航空材料学报, 1998, 18(1): 1) | [11] | Zheng R T, Zhang Y G, Chen C Q, et al.Influence of grain boundary on the fracture toughness of full lamellar γ-TiAl alloys[J]. Rare Met. Mater. Eng., 2003, 32: 1003 | [11] | (郑瑞廷, 张永刚, 陈昌麒等. 晶界对全片层组织γ-TiAl合金断裂韧性的影响[J]. 稀有金属材料与工程, 2003, 32: 1003) | [12] | Fu L F, Lin J G, Cao G X, et al.Relationship between yield strength and microstructure of a fully lamellar TiAl-based alloy[J]. Rare Met. Mater. Eng., 2001, 30: 178 | [12] | (付连峰, 林建国, 曹国鑫等. 全片层TiAl基合金的屈服强度与显微组织关系[J]. 稀有金属材料与工程, 2001, 30: 178) | [13] | Priarone P C, Rizzuti S, Rotella G, et al.Tool wear and surface quality in milling of a gamma-TiAl intermetallic[J]. Int. J. Adv. Manuf. Technol., 2012, 61: 25 | [14] | Pérez R G V. Wear mechanisms of WC inserts in face milling of gamma titanium aluminides[J]. Wear, 2005, 259: 1160 | [15] | Priarone P C, Rizzuti S, Settineri L, et al.Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide[J]. J. Mater. Process. Technol., 2012, 212: 2619 | [16] | Kolahdouz S, Hadi M, Arezoo B, et al.Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions[J]. Proc. CIRP, 2015, 26: 367 | [17] | Klocke F, Settineri L, Lung D, et al.High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity[J]. Wear, 2013, 302: 1136 | [18] | Hood R, Aspinwall D K, Sage C, et al.High speed ball nose end milling of γ-TiAl alloys[J]. Intermetallics, 2013, 32: 284 | [19] | Mantle A L, Aspinwall D K.Surface integrity of a high speed milled gamma titanium aluminide[J]. J. Mater. Process. Technol., 2001, 118: 143 | [20] | Hood R, Aspinwall D K, Soo S L, et al.Workpiece surface integrity when slot milling γ-TiAl intermetallic alloy[J]. CIRP Ann.-Manuf. Technol., 2014, 63: 53 | [21] | Fu Z T, Yang W Y, Zeng S Q, et al.Identification of constitutive model parameters for nickel aluminum bronze in machining[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1105 | [22] | Wu Q, Zhang Y D, Zhang H W.Corner-milling of thin walled cavities on aeronautical components[J]. Chin. J. Aeronaut., 2009, 22: 677 | [23] | Dong H Y, Ke Y L.Study on machining deformation of aircraft monolithic component by FEM and experiment[J]. Chin. J. Aeronaut., 2006, 19: 247 | [24] | Wang S.An optimal method for elastoplastic finite element analysis[J]. Acta Mech. Solida Sin., 1990, 11: 272 | [24] | (王苏. 弹塑性有限元的一种最优化方法[J]. 固体力学学报, 1990, 11: 272) | [25] | Gasik M M.Elastic properties of lamellar Ti-Al alloys[J]. Comp. Mater. Sci., 2009, 47: 206 | [26] | Zhou L, Wang Y, Ma Z Y, et al.Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites[J]. Int. J. Mach. Tool. Manu., 2014, 84: 9 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|