Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 505-512    DOI: 10.11900/0412.1961.2016.00256
  本期目录 | 过刊浏览 |
γ-TiAl金属间化合物铣削加工实验与有限元模拟
周丽1,2,崔超1,贾清2(),马英石1
1 沈阳理工大学机械工程学院 沈阳 110159
2 中国科学院金属研究所 沈阳 110016
Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics
Li ZHOU1,2,Chao CUI1,Qing JIA2(),Yingshi MA1
1 School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
Li ZHOU, Chao CUI, Qing JIA, Yingshi MA. Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics[J]. Acta Metall Sin, 2017, 53(4): 505-512.

全文: PDF(8772 KB)   HTML
摘要: 

运用ABAQUS有限元软件建立了γ-TiAl 金属间化合物铣削加工的细观模型,分析了不同材料模型的加工表面形貌及边缘断裂形成机理。结果表明,由于片层之间的材料特性不同,加工过程中片层与片层之间更容易出现裂纹或凹坑。同时,由于其较低的延展性,γ-TiAl 金属间化合物加工出口处形成较大的负剪切平面,从而导致边缘断裂。通过与实验结果比较,发现γ-TiAl 金属间化合物铣削加工表面粗糙度和边缘断口尺寸均小于由正六边形片层细观模型所得的模拟值,且略高于由矩形片层细观模型所得的模拟值。同时,加工表面粗糙度和边缘断口尺寸随切削深度的增加而逐渐增大,而切削速率的影响较小。因此,为了得到更好的加工表面质量,γ-TiAl 金属间化合物加工过程中应尽可能地采用较高的切削速率,而不是切削深度。

关键词 γ-TiAl 金属间化合物铣削加工细观模型有限元    
Abstract

γ-TiAl intermetallics are attractive candidates for applications in aircraft turbine engines due to their low density and good mechanical properties at high temperature. However, the low room temperature ductility makes the machinability of these materials poorer compared to the conventional alloys. In this work, a meso-model of γ-TiAl intermetallic was developed using ABAQUS finite element software. The surface morphology and edge fracture mechanism of different material models were analyzed, and the effects of cutting parameters on the surface roughness and size of edge fracture were investigated. The results indicate that the cracks and pits occur between the lamellar and lamellar with different material properties. At the same time, due to the low ductility of γ-TiAl intermetallic, the negative shear angle begins to form at the exit of workpiece, then the edge fracture is formed. In addition, for both surface roughness and size of edge fracture, the experimental data are slightly higher than the simulated data obtained by the hexagonal lamellar model, and smaller than those obtained by the rectangular lamellar model. With the increasing of cutting depth, the surface roughness and the size of edge fracture increase gradually, on the contrary, the cutting speed has a small effect on them. Therefore, in order to obtain a fine surface quality during machining of γ-TiAl intermetallic, the cutting speed can be adopted as higher as possible, but not the cutting depth.

Key wordsγ-TiAl intermetallics    milling process    meso-model    finite element
收稿日期: 2016-06-23     
基金资助:辽宁省教育厅一般项目No.LG201603
图1  γ-TiAl金属间化合物微观形貌的OM像
图2  平面端铣加工示意图
图3  二维单齿铣削模型
图4  γ-TiAl金属间化合物二维有限元模型及其局部放大图
图5  六边形片层结构和矩形片层结构的0°片层取向、45°片层取向、90°片层取向和全片层组织的有限元模型
图6  正六边形片层结构和矩形片层结构细观模型获得的γ-TiAl金属间化合物的表面形貌
图7  γ-TiAl金属间化合物铣削加工断面和表面形貌的OM像
图8  表面粗糙度与铣削深度和铣削速率的关系
Parameter 45° 90° Fully lamellar microstructure
Young's modulus E / GPa 220 170 300 350
Poisson's ratio ν 0.32 0.23 0.1 0.08
Yield strength σy / MPa 1296 847 1175 1401
Strain hardening coefficient B / MPa 2966 2168
Strain hardening exponent n 0.45 0.36
表1  γ-TiAl金属间化合物不同片层组织的材料常数[5~12,25]
图9  正六边形片层结构和矩形片层结构细观模型获得的γ-TiAl金属间化合物断裂前后工件出口处的边缘形貌
图10  γ-TiAl 金属间化合物断口形貌的SEM像
图11  γ-TiAl金属间化合物加工后工件边缘形貌的OM像
图12  边缘断口尺寸与切削参数的关系
[1] Klocke F, Lung D, Arft M, et al.On high-speed turning of a third-generation gamma titanium aluminide[J]. Int. J. Adv. Manuf. Technol., 2013, 65: 155
[2] Boyer R R.An overview on the use of titanium in the aerospace industry[J]. Mater. Sci. Eng., 1996, A213: 103
[3] Liu R C, Wang Z, Liu D, et al.Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion[J]. Acta Metall. Sin., 2013, 49: 641
[3] (刘仁慈, 王震, 刘冬等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49: 641)
[4] Aspinwall D K, Dewes R C, Mantle A L.The machining of γ-TiAl intermetallic alloys[J]. CIRP Ann.-Manuf. Technol., 2005, 54: 99
[5] Peng Y B, Chen F, Wang M Z, et al.Relationship between mechanical properties and lamellar orientation of PST crystals in Ti-45Al-8Nb alloy[J]. Acta Metall. Sin., 2013, 49: 1457
[5] (彭英博, 陈锋, 王敏智等. Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系[J]. 金属学报, 2013, 49: 1457)
[6] Kad B K, Dao M, Asaro R J. Numerical simulations of stress-strain behavior in two-phase α2+γ lamellar TiAl alloys [J]. Mater. Sci. Eng., 1995, A192-193: 97
[7] Su J L, Lin G F, Zheng S H.Effects of grain size and lamellar thickness on yield strength of fully lamellar γ-TiAl based alloys[J]. J. Aeronaut. Mater., 2009, 29(4): 1
[7] (苏继龙, 林高飞, 郑书河. 晶粒尺寸和片层厚度对全片层γ-TiAl基合金屈服强度的影响[J]. 航空材料学报, 2009, 29(4): 1)
[8] Su J L, Hu G K.Micromechanical study on yield stress and the effects of twinning for γ-TiAl-based PST crystals[J]. Acta Metall. Sin., 2005, 41: 1243
[8] (苏继龙, 胡更开. γ-TiAl基PST晶体的屈服应力及孪晶影响的细观力学研究[J]. 金属学报, 2005, 41: 1243)
[9] Inui H, Oh M H, Nakamura A, et al.Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl[J]. Acta Metall. Mater., 1992, 40: 3095
[10] Lin J G, Zhou Y J, Zhang Y G, et al.Microstructure and high-temperature compression behavior of Ti-48Al PST crystals[J]. J. Aeronaut. Mater., 1998, 18(1): 1
[10] (林建国, 周亚建, 张永刚等. Ti-48Al合金PST晶体显微组织及高温压缩性能[J]. 航空材料学报, 1998, 18(1): 1)
[11] Zheng R T, Zhang Y G, Chen C Q, et al.Influence of grain boundary on the fracture toughness of full lamellar γ-TiAl alloys[J]. Rare Met. Mater. Eng., 2003, 32: 1003
[11] (郑瑞廷, 张永刚, 陈昌麒等. 晶界对全片层组织γ-TiAl合金断裂韧性的影响[J]. 稀有金属材料与工程, 2003, 32: 1003)
[12] Fu L F, Lin J G, Cao G X, et al.Relationship between yield strength and microstructure of a fully lamellar TiAl-based alloy[J]. Rare Met. Mater. Eng., 2001, 30: 178
[12] (付连峰, 林建国, 曹国鑫等. 全片层TiAl基合金的屈服强度与显微组织关系[J]. 稀有金属材料与工程, 2001, 30: 178)
[13] Priarone P C, Rizzuti S, Rotella G, et al.Tool wear and surface quality in milling of a gamma-TiAl intermetallic[J]. Int. J. Adv. Manuf. Technol., 2012, 61: 25
[14] Pérez R G V. Wear mechanisms of WC inserts in face milling of gamma titanium aluminides[J]. Wear, 2005, 259: 1160
[15] Priarone P C, Rizzuti S, Settineri L, et al.Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide[J]. J. Mater. Process. Technol., 2012, 212: 2619
[16] Kolahdouz S, Hadi M, Arezoo B, et al.Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions[J]. Proc. CIRP, 2015, 26: 367
[17] Klocke F, Settineri L, Lung D, et al.High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity[J]. Wear, 2013, 302: 1136
[18] Hood R, Aspinwall D K, Sage C, et al.High speed ball nose end milling of γ-TiAl alloys[J]. Intermetallics, 2013, 32: 284
[19] Mantle A L, Aspinwall D K.Surface integrity of a high speed milled gamma titanium aluminide[J]. J. Mater. Process. Technol., 2001, 118: 143
[20] Hood R, Aspinwall D K, Soo S L, et al.Workpiece surface integrity when slot milling γ-TiAl intermetallic alloy[J]. CIRP Ann.-Manuf. Technol., 2014, 63: 53
[21] Fu Z T, Yang W Y, Zeng S Q, et al.Identification of constitutive model parameters for nickel aluminum bronze in machining[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1105
[22] Wu Q, Zhang Y D, Zhang H W.Corner-milling of thin walled cavities on aeronautical components[J]. Chin. J. Aeronaut., 2009, 22: 677
[23] Dong H Y, Ke Y L.Study on machining deformation of aircraft monolithic component by FEM and experiment[J]. Chin. J. Aeronaut., 2006, 19: 247
[24] Wang S.An optimal method for elastoplastic finite element analysis[J]. Acta Mech. Solida Sin., 1990, 11: 272
[24] (王苏. 弹塑性有限元的一种最优化方法[J]. 固体力学学报, 1990, 11: 272)
[25] Gasik M M.Elastic properties of lamellar Ti-Al alloys[J]. Comp. Mater. Sci., 2009, 47: 206
[26] Zhou L, Wang Y, Ma Z Y, et al.Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites[J]. Int. J. Mach. Tool. Manu., 2014, 84: 9
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[3] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[6] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[7] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[8] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[9] 马荣耀, 穆鑫, 刘博, 王长罡, 魏欣, 赵林, 董俊华, 柯伟. 静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1593-1605.
[10] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[11] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[12] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[13] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[14] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[15] 张青松,朱振宇,高杰维,戴光泽,徐磊,冯健. 各向异性和偏轴加载对1050车轮钢疲劳性能的影响[J]. 金属学报, 2017, 53(3): 307-315.