|
|
交流电对X80钢在近中性环境中腐蚀行为的影响 |
万红霞1,宋东东1,2,刘智勇1,杜翠薇1( ),李晓刚1,3 |
1 北京科技大学新材料技术研究院 北京 100083 2 航天材料及工艺研究所 北京 100076,3 中国科学院宁波材料技术与工程研究所 宁波 315201 3 中国科学院宁波材料技术与工程研究所 宁波 315201 |
|
Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment |
Hongxia WAN1,Dongdong SONG1,2,Zhiyong LIU1,Cuiwei DU1( ),Xiaogang LI1,3 |
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China 3 Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
引用本文:
万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
Hongxia WAN,
Dongdong SONG,
Zhiyong LIU,
Cuiwei DU,
Xiaogang LI.
Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. Acta Metall Sin, 2017, 53(5): 575-582.
[1] | Tribollet B, Meyer M.2-AC-induced corrosion of underground pipelines [A]. Orazem M. Undergr Pipeline Corrosion [M]. Amsterdam: Woodhead Publishing Limited, 2014: 35 | [2] | Roger F.Testing and mitigation of AC corrosion on 8 line: a field study [A]. Corrosion 2004[C]. New Orleans, Louisiana: NACE International, 2004 | [3] | Zhang R, Vairavanathan P R, Lalvani S B.Perturbation method analysis of AC-induced corrosion[J]. Corros. Sci., 2008, 50: 1664 | [4] | Wakelin R G, Sheldon C.Investigation and mitigation of AC corrosion on a 300 MM natural gas pipeline [A]. Corrosion 2004[C]. New Orleans, Louisiana: NACE International, 2004: 972 | [5] | Zhu M, Du C W, Li X G, et al.Effect of AC current density on stress corrosion cracking behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution[J]. Electrochim. Acta, 2014, 117: 351 | [6] | Tang D Z, Du Y X, Li X X, et al.Effect of alternating current on the performance of magnesium sacrificial anode[J]. Mater. Des., 2016, 93: 133 | [7] | Zhu M, Du C W, Li X G, et al.Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution[J]. Corros. Sci., 2014, 87: 224 | [8] | Zhu M, Liu Z Y, Du C W, et al.Effects of alternating current on corrosion behavior of X80 pipeline steel in acid soil environment[J]. J. Mater. Eng., 2015, 43: 85 | [8] | (朱敏, 刘智勇, 杜翠薇等. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响[J]. 材料工程, 2015, 43: 85) | [9] | Lalvani S B, Zhang G.The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I[J]. Corros. Sci., 1995, 37: 1567 | [10] | Jones D A.Effect of alternating current on corrosion of low alloy and carbon steels[J]. Corrosion, 1978, 34: 428 | [11] | Kulman F E.Effects of alternating currents in causing corrosion[J]. Corrosion, 1961, 17: 34 | [12] | Bosch R W, Bogaerts W F.A theoretical study of AC-induced corrosion considering diffusion phenomena[J]. Corros. Sci., 1998, 40: 323 | [13] | Nielsen L V.Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements [A]. Corrosion 2005[C]. Houston, Texas: NACE International, 2005 | [14] | Xu L Y, Su X, Yin Z X, et al.Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines[J]. Corros. Sci., 2012, 61: 215 | [15] | Lalvani S B, Lin X A.A theoretical approach for predicting AC-induced corrosion[J]. Corros. Sci., 1994, 36: 1039 | [16] | Lalvani S B, Lin X.A revised model for predicting corrosion of materials induced by alternating voltages[J]. Corros. Sci., 1996, 38: 1709 | [17] | Fu A Q, Cheng Y F.Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution[J]. Corros. Sci., 2010, 52: 612 | [18] | Linhardt P, Ball G.AC corrosion: results from laboratory investigations and from a failure analysis [A]. Proceedings of the NACE International Corrosion/2006 Conference Papers on CD-ROM[C]. San Diego, CA: NACE, 2006 | [19] | Goidanich S, Lazzari L, Ormellese M.AC corrosion. Part 2: Parameters influencing corrosion rate[J]. Corros. Sci., 2010, 52: 916 | [20] | Jiang Z T, Du Y X, Dong L, et al.Effect of AC current on corrosion potential of Q235 steel[J]. Acta Metall. Sin., 2011, 47: 997 | [20] | (姜子涛, 杜艳霞, 董亮等. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011, 47: 997) | [21] | Yang Y, Li Z L, Wen C.Effects of alternating current on X70 steel morphology and electrochemical behavior[J]. Acta Metall. Sin., 2013, 49: 43 | [21] | (杨燕, 李自力, 文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013, 49: 43) | [22] | Wan H X, Du C W, Liu Z Y, et al.The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment[J]. Ocean Eng., 2016, 114: 216 | [23] | Li M C, Cheng Y F.Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines[J]. Electrochim. Acta, 2007, 52: 8111 | [24] | Fu A Q, Cheng Y F.Effect of alternating current on corrosion and effectiveness of cathodic protection of pipelines[J]. Can. Metall. Quart., 2012, 51: 81 | [25] | Zhang G A, Cheng Y F.On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production[J]. Corros. Sci., 2009, 51: 87 | [26] | Kuang D, Cheng Y F.Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions[J]. Corros. Sci., 2014, 85: 304 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|