Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1089-1097    DOI: 10.3724/SP.J.1037.2013.00271
  论文 本期目录 | 过刊浏览 |
阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响
刘玉1),李焰2),李强1)
1) 中国石油大学(华东)化学工程学院, 青岛 266580
2) 中国石油大学(华东)机电工程学院, 青岛 266580
EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT
LIU Yu1), LI Yan2), LI Qiang1)
1) College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580
2) College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580
引用本文:

刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. Acta Metall Sin, 2013, 49(9): 1089-1097.

全文: PDF(3498 KB)  
摘要: 

采用电化学测试、氢渗透电流检测、慢应变速率拉伸实验和断口分析等方法研究了X80管线钢在模拟深海条件下的氢脆敏感性,并对阴极极化电位的影响进行了考察. 结果表明,阴极极化电位对材料的氢渗透和氢致开裂行为影响明显.渗氢电流与阴极极化电位呈现良好的线性关系,X80管线钢在自腐蚀状态下没有氢脆敏感性, 在-900 mV以上的阴极电位范围内,渗氢电流密度不超过0.1157 μA/cm2, 且力学性能也无明显下降,是较适合的阴极保护电位区间, 而负于该电位时, 渗氢电流增大,慢应变速率拉伸试样断口由韧窝形貌转变为准解理形貌, 材料脆断现象明显.

关键词 X80管线钢深海环境阴极保护氢脆敏感性慢应变速率拉伸渗氢电流    
Abstract

Pipeline steels utilized in deep seawater are usually protected cathodically. However, inappropriate operations of cathodic protection systems cause hydrogen embrittlement failures to these high strength steels in seawater which result from the application of excessive negative potentials, leading to massive generation of hydrogen at the protected pipelines' surface. With high strength steels increasingly widely used in the deep sea environment, the basic research to the cathodic protection and susceptibility to hydrogen embrittlement of high strength steels under such a circumstance is still unfortunately relatively lack and urgently needed to supplement. Electrochemical measurement, hydrogen permeation current detection, slow strain rate tensile test (SSRT) and fracture morphology analysis, therefore, were employed to investigate effect of cathodic polarization level on the susceptibility of API X80 pipeline steels to hydrogen embrittlement in simulated deep seawater in the present work. The results showed that the applied cathodic polarization potentials significantly affected hydrogen permeation and hydrogen--induced cracking behavior of X80 steels immersed in deep seawater. A linear relationship was found between the hydrogen permeation current densities and cathodic polarization potentials applied according to the findings of the potential dynamic polarization and hydrogen permeation current measurements. SSRT tests suggested that X80 pipeline steels immersed in simulated deep seawater didn't show susceptibility to hydrogen embrittlement at open circuit potential, and thus the optimum cathodic protection potential range was supposed to be above -900 mV (vs saturated calomel electrode). Under such a cathodic polarization potential, the hydrogen permeation current densities of X80 pipeline steel specimens were less than 0.1157 μA/cm2 andtheir mechanical properties didn't decrease remarkably. Once the cathodic polarization potentials lower than -900 mV, however, hydrogen permeation current densities and calculated hydrogen embrittlement coefficients ψ of X80 pipeline steels increased significantly, exhibiting higher susceptibility to hydrogen embrittlement in simulated deep seawater. Furthermore, macro-and micro-morphologies of fracture surface of X80 pipeline steels after SSRT test indicated that the fracture morphology transformed from a dimpled pattern with ductile fracture to a quasi—cleavage pattern when cathodically polarized to lower than -900 mV, i.e. showing obvious brittle failure characteristics.

Key wordsX80 pipeline steel    deep seawater    cathodic protection    hydrogen embrittlement susceptibility    slow strain rate tensile test    hydrogen permeation current
收稿日期: 2013-05-17     
基金资助:

国家高技术研究发展计划项目2012AA09A203和中央高校基本科研业务费专项资金项目12CX06059A资助

作者简介: 刘玉, 女, 1988年生, 硕士生

[1] Billingham J, Sharp J V, Spurrier J.  Review of the Performance of High Strength Steel Used Offshore.London: Health and Safety Executive, 2003

[2] Cwiek J.  J Mater Process Technol, 2005; 164-165: 1007
[3] Barker J C.  Data Surveys of Hydrogen Assisted Cracking in High Strength Jack-Up Steels.London: Health and Safety Executive, 1998: 1
[4] Zheng W L.  Environment Sensitive Fracture of Steel. Beijing: Chemical Industry Press, 1988: 120
(郑文龙. 钢的环境敏感断裂. 北京: 化学工业出版社, 1988: 120)
[5] Hardie D, Charles E A, Lopez A H.  Corros Sci, 2006; 48: 4378
[6] Qiu K M, Wei B M, Fang Y H.  J Nanjing Inst Chem Technol, 1992; 14: 8
(邱开元, 魏宝明, 方耀华. 南京化工学院学报, 1992; 14: 8)
[7] Du X S, Su Y J, Li J X, Qiao L J, Chu W Y.  Corros Sci, 2012; 65: 278
[8] Kim D K, Muralidharan S, Ha T H, Bae J H, Ha Y H, Lee H G, Scantlebury J D.Electrochim Acta, 2006; 51: 5259
[9] Zucchi F, Grassi V, Monticelli C, Trabanelli G.  Corros Sci, 2006; 48: 522
[10] DNV-RP-F103.  Recommended Practice-Cathodic Protection of Submarine Pipelines by Galvanic Anodes.Norway: Det Norske Veritas, 2012
[11]NACE SP0169.  Standard Practice-Control of External Corrosion on Underground Submerged Metellic Piping Systems.Houston: NACE International, 2007
[12] ISO 15589-2.  Petroleum, Petrochemical and Natural Gas Industries-Cathodic Protection of Pipeline Transportation Systems-Part 2: Offshore Pipelines. Switzerland: ISO, 2012
[13] Zhang D L, Li Y.  Adv Mater Res, 2009; 79-82: 1051
[14] Devanathan M A V, Stachurski Z, Beck W.  J Electrochem Soc, 1963; 10: 886
[15] Batt C, Robinson M J.  Br Corros J, 2002; 37: 194
[16] Zhang L, Du M, Liu J F, Li Y, Liu P L.  Mater Sci Technol, 2011; 19: 96
(张林, 杜敏, 刘吉飞, 李妍, 刘培林. 材料科学与工艺, 2011; 19: 96)
[17] Luo D, Cui H W, Cai Q W, Wu H B.  Phys Exam Test, 2009; 27: 11
(罗登, 崔海伟, 蔡庆伍, 武会宾. 物理测试, 2009; 27: 11)
[18] Capelle J, Dmytrakh I, Pluvinage G.  Corros Sci, 2010; 52: 1554
[19] Thomason W H.  Mater Perform, 1988; 27: 94
[20] Huang Y L, Nakajima A, Nishikata A, Tsuru T.  ISIJ Int, 2003; 43: 548
[21] Frappart S, Feaugas X, Creus J, Thebault F, Delattre L, Marchebois H.  J Phys Chem Solids,2012; 71: 1467
[22] Addach H, Bercot P, Rezrazi M, Takadoum J.  Corros Sci, 2009; 51: 263
[23] Zhang L, Du M, Chen R L, Li Y, Zhang G Q, Liu P L.  Corros Sci Prot Technol, 2012; 24: 101
(张林, 杜敏, 陈如林, 李妍, 张国庆, 刘培林. 腐蚀科学与防护技术, 2012; 24: 101)
[24] Kim S J, Okido M, Moon K M.  Korean J Chem Eng, 2003; 20: 560
[25] Chen X, Wu M, He C, Xiao J.  Acta Metall Sin, 2010; 46: 951
(陈旭, 吴明, 何川, 肖军. 金属学报, 2010; 46: 951)
[26] Zhu W Y, Qiao L J, Chen Q Z, Gao K W.  Fracture and Environmental Fracture.Beijing: Science Press, 2000: 133
(褚武扬, 乔利杰, 陈奇志, 高克玮. 断裂与环境断裂. 北京: 科学出版社, 2000: 133)
[27] Dong J M, Pan X D, Fan P L, Qi J G, Xue J.  J Xi'an Jiaotong Univ, 1998; 32: 98
(董俊明, 潘希德, 樊培丽, 戚继皋, 薛锦. 西安交通大学学报, 1998; 32: 98)
[28] Moro I, Briottet L, Lemoine P, Andrieu E, Blanc C, Odemer G.  Mater Sci Eng, 2010; 527: 7252
[29] Yang Y, Zhang T, Shao Y W, Meng G Z, Wang F H.  Corros Sci, 2013; 73: 250
[30] Yang Y, Zhang T, Shao Y W, Meng G Z, Wang F H.  Corros Sci, 2010; 52: 2697
[1] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[2] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[3] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[4] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[5] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[6] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[7] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[8] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[9] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[10] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[11] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.
[12] 范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.
[13] 王新华,李秀刚,李强,黄福祥,李海波,杨建. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561.
[14] 刘智勇 王长朋 杜翠薇 李晓刚. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2011, 47(11): 1434-1439.
[15] 邓伟 高秀华 秦小梅 高鑫 赵德文 杜林秀. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966.