Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 209-216    DOI: 10.11900/0412.1961.2015.00219
  论文 本期目录 | 过刊浏览 |
蒸汽中的溶解氧对锆合金腐蚀行为的影响*
韦天国1,林建康2,龙冲生1(),陈洪生1
1 中国核动力研究设计院反应堆燃料及材料重点实验室, 成都 610213
2 福建福清核电有限公司, 福清 350318
EFFECT OF DISSOLVED OXYGEN IN STEAM ON THE CORROSION BEHAVIORS OF ZIRCONIUM ALLOYS
Tianguo WEI1,Jiankang LIN2,Chongsheng LONG1(),Hongsheng CHEN1
1 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
2 Fujian Fuqing Nuclear Power Co. Ltd., Fuqing 350318, China
引用本文:

韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
Tianguo WEI, Jiankang LIN, Chongsheng LONG, Hongsheng CHEN. EFFECT OF DISSOLVED OXYGEN IN STEAM ON THE CORROSION BEHAVIORS OF ZIRCONIUM ALLOYS[J]. Acta Metall Sin, 2016, 52(2): 209-216.

全文: PDF(5524 KB)   HTML
摘要: 

研究了400 ℃, 10.3 MPa蒸汽中, 溶解氧(DO)的存在对Zr-4, N18 (Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr)以及N36 (Zr-1.0Sn-1.0Nb-0.3Fe)合金腐蚀行为的影响, 采用微循环动水回路将溶解氧含量分别控制在0.1×10-6和1.0×10-6. 结果表明, 2种溶解氧浓度条件下, 腐蚀90 d后, N18合金的腐蚀增重与Zr-4合金的腐蚀增重接近, 而N36合金的腐蚀增重最高. 腐蚀初期, DO含量更高的条件下3种合金的腐蚀增重反而更低; 随着腐蚀时间的延长, 1.0×10-6 DO条件下合金的腐蚀增重逐渐超过0.1×10-6 DO 条件下的腐蚀增重, Nb含量越高的合金, 所需的时间越短.

关键词 锆合金腐蚀行为循环回路溶解氧    
Abstract

Advanced boiling water reactors (ABWRS) show optimistic application prospect in the future. However, in these reactors, influence of dissolved oxygen (DO) on the corrosion rate of zirconium fuel claddings should be seriously considered. In this work, the effect of the dissolved oxygen (DO) on the corrosion behaviors of Zr-4, N18 (Zr-1.0Sn-0.3Nb -0.3Fe-0.1Cr) and N36 (Zr-1.0Sn-1.0Nb-0.3Fe) alloys in 400 ℃ and 10.3 MPa steam was investigated. A recirculation loop was used to control the DO level at about 0.1×10-6 and 1.0×10-6, respectively. The results showed that, under the two DO level conditions, N18 had almost the same weight gain as Zr-4 after exposure for 90 d, and N36 had the highest weight gain. In the initial period of the corrosion test, the three alloys had lower weight gain under higher DO level condition. With the increase of exposure time, the weight gain under 1.0×10-6 DO level exceeded gradually the weight gain under 0.1×10-6 level for each alloy, and the time needed for exceeding was significantly shorter for the alloy with higher Nb content.

Key wordsZr alloy    corrosion behavior    recirculation loop    dissolved oxygen
收稿日期: 2015-04-14     
基金资助:*国家自然科学基金资助项目51171175
Alloy Sn Nb Fe Cr O Zr
Zr-4 1.30~1.50 - 0.18~0.24 0.09~0.12 0.09~0.14 Bal.
N18 0.80~1.20 0.20~0.40 0.30~0.40 0.07~0.15 0.08~0.16 Bal.
N36 0.90~1.10 0.90~1.10 0.20~0.40 - 0.08~0.16 Bal.
表1  锆合金的化学成分
图1  N18与N36合金的TEM像
Position Fe Cr Nb Zr
P1 19.73 5.49 4.29 70.49
P2 20.83 6.02 2.49 70.65
P3 17.71 4.06 16.73 61.49
P4 13.68 0.24 26.25 59.84
P5 9.85 0.23 20.07 69.85
P6 9.87 0.17 22.64 67.31
表2  图1中N18和N36合金中第二相粒子成分
图2  3种合金在400 ℃, 10.3 MPa含氧蒸汽中的腐蚀增重曲线
图3  Zr-4与N18合金氧化膜外表面形貌
图4  氧化膜表面疖状斑形貌
图5  Zr-4, N18和N36合金在1.0×10-6 DO条件下腐蚀90 d后的氧化膜横截面形貌
图6  Zr-4与N18合金氧化膜中第二相粒子周围的裂纹
图7  金属Nb在0.1×10-6 DO条件下腐蚀2 d后生成的氧化膜的形貌
图8  金属Nb生成的氧化膜的XRD谱
[1] Cox B.J Nucl Mater, 2005; 336: 331
[2] Zhou B X, Yao M Y, Li Z K, Wang X M, Zhou J, Long C S, Liu Q, Luan B F.J Mater Sci Technol, 2012; 28: 606
[3] Bojinov M, Karastoyanov V, Kinnunen P, Saario T.Corros Sci, 2010; 52: 54
[4] Kumar M K, Aggarwal S, Kain V, Saario T, Bojinov M.Nucl Eng Des, 2010; 240: 985
[5] Cox B, Garzarolli F, Rudling P.Corrosion of Zr-Nb Alloys, Zirat-9 Specialtopics Report, Advanced Nuclear Technology International, Ekbaken 33, SE-735, 35, SURAHAMMAR, Sweden, September, 2004
[6] Kumar M K, Aggarwal S, Beniwal D, Dey A K, Singh H, Kain V.Mater Corros, 2014; 65: 244
[7] Allen T R, Konings R J M, Motta A T.Compr Nucl Mater, 2012; 5: 49
[8] Yan Y H, Gao Z Y.Nucl Power Eng, 1997; 18(1): 12
[8] (严育华, 高祖瑛. 核动力工程, 1997; 18(1): 12)
[9] Liu X R, Chen Z Q, Hou Z S.Shangdong Elec Power, 1996; (5): 46
[9] (刘信荣, 陈志奇, 侯忠松. 山东电力技术, 1996; (5): 46)
[10] Zhang H X.PhD Dissertation, Xi'an Jiaotong University, 2009
[10] (章海霞. 西安交通大学博士学位论文, 2009)
[11] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q.Shanghai Met, 2008; 30(6): 1
[11] (姚美意, 周邦新, 李强, 夏爽, 刘文庆. 上海金属, 2008; 30(6): 1)
[12] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y.Acta Metall Sin, 2011; 47: 865
[12] (姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[13] Zhang H X, Fruchart D, Hlil E K, Ortega L, Li Z K, Zhang J J, Sun J, Zhou L.J Nucl Mater, 2010; 396: 65
[14] Ni N, Lozano-Perez S, Sykes J, Grovenor C.Ultramicroscopy, 2011; 111: 123
[15] Ni N, Hudson D, Wei J, Wang P, Lozano-Perez S, Smith G D W, Sykes J M, Yardley S S, Moore K L, Lyon S, Cottis R, Preuss M, Grovenor C R M.Acta Mater, 2012; 60: 7132
[16] Li Z K, Zhou L, Li P Z, Zhang J J, Xue X Y, Song Q Z.Rare Met Mater Eng, 1999; 28: 380
[16] (李中奎, 周廉, 李佩志, 张建军, 薛祥义, 宋启忠. 稀有金属材料与工程, 1999; 28: 380)
[17] Zhao W J, Miao Z, Jiang Y R, Jiang H M, Zhou B X.Rare Met, 2000; 24: 150
[17] (赵文金, 苗志, 蒋有荣, 蒋宏曼, 周邦新. 稀有金属, 2000; 24: 150)
[18] Parise M, Sicardy O, Cailletaud G.J Nucl Mater, 1998; 256: 35
[19] Tejland P, Andren H O.J Nucl Mater, 2012; 430: 64
[20] Baek J H, Jeong Y H, Kim I S.J Nucl Mater, 2000; 280: 235
[21] Jeong Y H, Kim H G, Kim T H.J Nucl Mater, 2003; 317: 1
[22] Kim H G, Park J Y, Jeong Y H.J Nucl Mater, 2005; 347: 140
[23] Proff C, Abolhassania S, Lemaignan C.J Nucl Mater, 2013; 432: 222
[1] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[2] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[5] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[6] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
[7] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[8] 张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
[9] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[10] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[11] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[12] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[13] 张诚,宋西平,刘敬茹,杨云,尤力. 氘含量对Zr-4合金显微组织和力学性能的影响*[J]. 金属学报, 2016, 52(12): 1572-1578.
[14] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[15] 王桢,周邦新,王波阳,黄娇,姚美意,张金龙. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为*[J]. 金属学报, 2016, 52(1): 78-84.