Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 715-722    DOI: 10.11900/0412.1961.2019.00275
  本期目录 | 过刊浏览 |
Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为
赵燕春1,2(), 毛雪晶1, 李文生1, 孙浩1, 李春玲3, 赵鹏彪1, 寇生中1
1.兰州理工大学省部共建有色金属加工与再利用国家重点实验室 兰州 730050
2.Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200, USA
3.兰州理工大学机电工程学院 兰州 730050
Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel
ZHAO Yanchun1,2(), MAO Xuejing1, LI Wensheng1, SUN Hao1, LI Chunling3, ZHAO Pengbiao1, KOU Shengzhong1, Liaw Peter K.2
1.State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200, USA
3.College of Mechano-Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(1970 KB)   HTML
摘要: 

采用水冷铜坩埚磁悬浮熔炼-铜模负压吸铸法制备了Fe-15Mn-5Si-14Cr-0.2C非晶复合材料棒状试样,通过XRD和EBSD对合金的微观组织进行表征,并研究试样室温压缩力学性能;采用电化学工作站三电极体系测试试样在人工海水中的腐蚀行为,并利用SEM和EDS观察和分析电化学腐蚀后的形貌及腐蚀产物。结果表明,Fe-15Mn-5Si-14Cr-0.2C非晶复合材料试样组织由非晶相+晶体相(CFe15.1过冷奥氏体相和Fe-Cr铁素体相)组成,试样在室温环境下的综合力学性能优异,屈服强度、断裂强度和塑性应变分别为978 MPa、2645 MPa和35.8%。试样在人工海水中表现出良好的耐蚀性,与304不锈钢相比,Fe-15Mn-5Si-14Cr-0.2C非晶复合材料自腐蚀电位大,自腐蚀电流密度低,极化电阻高,容抗弧半径大且只有一个高频容抗弧,只受电极电位的影响,腐蚀的动力学速率低,钝化膜稳定致密,具有成为新一代海洋工程耐蚀材料的潜力。

关键词 非晶钢微观组织力学性能腐蚀行为    
Abstract

Amorphous steels exhibit ultra-high strength but room-temperature brittleness and strain-softening behavior as loading, which restricted the application of amorphous steels as high-performance structural material. Developing in situ crystals is an effective way to toughen the amorphous alloys. However, the crystals may sacrifice the corrosion resistance of amorphous steels. In this work, austenite and ferrite duel phases were introduced to the amorphous phase, via transformation induced plasticity (TRIP) of the austenite as loading, to enhance the ductility and improve the work-hardening behavior; and via the synergy of ferrite and amorphous phase to ensure the corrosion resistance. A novel amorphous steel Fe-15Mn-5Si-14Cr-0.2C was fabricated by magnetic suspension melting in a water-cooled copper crucible, and negative pressure suction casting into a copper mold. The microstructure and mechanical properties of the amorphous steel were characterized by XRD, EBSD and the electronic universal testing machine. The corrosion behavior in artificial seawater was studied on an electrochemical work station with a three-electrode system, and the corrosion morphology and corrosion products were characterized by SEM with EDS analysis. The results showed that the as-cast amorphous steel consisted of the amorphous matrix, CFe15.1 super-cooled austenite and Fe-Cr ferrite phases. From surface to inner, amorphous phases mainly exist in the margin, while crystalline phases are abundantly distributed in the center. The amorphous steel exhibited excellent comprehensive mechanical properties at room temperature, and its yield strength, fracture strength and plastic strain were up to 978 MPa, 2645 MPa and 35.8%, respectively. In artificial seawater, compared with 304 stainless steel, the amorphous steel showed high self-corrosion potential, low self-corrosion current density and high polarization resistance, large resistance arc radius, only one high frequency resistance arc and low corrosion kinetic rate. Moreover, the stable and dense passivation film was observed on the corrosion surface. Their excellent corrosion resistance and mechanical properties endow the amorphous steel with the potential to become a novel corrosion-resistant structural material for marine engineering.

Key wordsamorphous steel    microstructure    mechanical property    corrosion behavior
收稿日期: 2019-08-19     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金项目(51661017);国家留学基金项目(201808625027);甘肃省杰出青年基金项目(17JR5RA108);兰州理工大学红柳优秀青年基金项目
通讯作者: 赵燕春     E-mail: zhaoyanchun@lut.edu.cn
Corresponding author: ZHAO Yanchun     E-mail: zhaoyanchun@lut.edu.cn
作者简介: 赵燕春,女,1984年生,副教授,博士

引用本文:

赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
Yanchun ZHAO, Xuejing MAO, Wensheng LI, Hao SUN, Chunling LI, Pengbiao ZHAO, Shengzhong KOU, Peter K. Liaw. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel. Acta Metall Sin, 2020, 56(5): 715-722.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00275      或      https://www.ams.org.cn/CN/Y2020/V56/I5/715

图1  Fe-15Mn-5Si-14Cr-0.2C铸态和加载断裂后试样XRD谱
图2  Fe-15Mn-5Si-14Cr-0.2C铸态试样室温工程应力-应变曲线
图3  直径2 mm的Fe-15Mn-5Si-14Cr-0.2C铸态试样和断后试样横截面区域的EBSD像
图4  298 K下直径2 mm的Fe-15Mn-5Si-14Cr-0.2C试样与304不锈钢在人工海水中的极化曲线

Alloy

Ecorr

mV

icorr

μA·cm-2

Rp

106 Ω·cm2

Epit

mV

Epit-Ecorr

mV

304 stainless steel-263.431.5822.2384.93648.41
Fe-15Mn-5Si-14Cr-0.2C-211.850.4908.9598.58810.43
表1  298 K下直径2 mm的Fe-15Mn-5Si-14Cr-0.2C试样与304不锈钢在人工海水中的腐蚀参数
图5  Fe-15Mn-5Si-14Cr-0.2C试样与304不锈钢在人工海水中的交流阻抗图
图6  Fe-15Mn-5Si-14Cr-0.2C试样腐蚀后边缘区域和中心区域的SEM像
AreaFeMnSiCrC
Margin56.547.3215.496.1514.50
Center58.8011.606.588.2714.75
表2  Fe-15Mn-5Si-14Cr-0.2C合金腐蚀后边缘区域和中心区域的EDS分析结果 (mass fraction / %)
图7  Fe-15Mn-5Si-14Cr-0.2C试样腐蚀后的SEM-BS像
1 Inoue A. High strength bulk amorphous alloys with low critical cooling rates (Overview) [J]. Mater. Trans., 1995, 36: 866
2 Hofmann D C. Shape memory bulk metallic glass composites [J]. Science, 2010, 329: 1294
doi: 10.1126/science.1193522 pmid: 20829474
3 Qiao J C, Wang Q, Pelletier J M, et al. Structural heterogeneities and mechanical behavior of amorphous alloys [J]. Prog. Mater. Sci., 2019, 104: 250
4 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33(5): 177
4 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177
5 Pan J, Zhang M, Chen Q, et al. Study of anticorrosion ability of Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9 bulk metallic glass in strong acid solutions [J]. Rare Met. Mater. Eng., 2008, 37: 805
5 潘 杰, 张 猛, 谌 祺等. FeCoCrMoCBY块体非晶合金在强酸介质中的耐蚀性能 [J]. 稀有金属材料与工程, 2008, 37: 805
6 Fan H B, Zheng W, Wang G Y, et al. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions [J]. Metall. Mater. Trans., 2011, 42A: 1524
7 Gostin P F, Gebert A, Schultz L. Comparison of the corrosion of bulk amorphous steel with conventional steel [J]. Corros. Sci., 2010, 52: 273
8 Naka M, Hashimoto K, Inoue A, et al. Corrosion-resistant amorphous Fe-C alloys containing chromium and/or molybdenum [J]. J. Non-Cryst. Solids, 1979, 31: 347
9 Jayaraj J, Kim K B, Ahn H S, et al. Corrosion mechanism of N-containing Fe-Cr-Mo-Y-C-B bulk amorphous alloys in highly concentrated HCl solution [J]. Mater. Sci. Eng., 2007, A449-451: 517
10 Pardo A, Merino M C, Otero E, et al. Influence of Cr additions on corrosion resistance of Fe- and Co-based metallic glasses and nanocrystals in H2SO4 [J]. J. Non-Cryst. Solids, 2006, 352: 3179
11 Chen J, Wang J Z, Chen B B, et al. Tribocorrosion behaviors of Inconel 625 alloy sliding against 316 steel in seawater [J]. Tribol. Trans., 2010, 54: 514
12 Hu X F, Jiang H C, Zhao M J, et al. Microstructure and mechanical properties of welded joint of a Fe-Cr-Ni-Mo steel with high-strength and high-toughness [J]. Acta Metall. Sin., 2018, 54: 1
12 胡小锋, 姜海昌, 赵明久等. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能 [J]. 金属学报, 2018, 54: 1
13 Hakiki N B, Boudin S, Rondot B, et al. The electronic structure of passive films formed on stainless steels [J]. Corros. Sci., 1995, 37: 1809
14 Zhi J H, Wang Y, Li J H, et al. Microsturcture and high temperature mechanical properties of martensitic stainless steel [J]. Heat Treat. Met., 2018, 43(3): 68
14 支金花, 王 裕, 李继红等. 1Cr12Ni2W1MolV马氏体不锈钢的组织和高温力学性能 [J]. 金属热处理, 2018, 43(3): 68
15 Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 99
15 曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 99
16 Stern M, Geary A L. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
17 Li J W, Yang L J, Ma H R, et al. Improved corrosion resistance of novel Fe-based amorphous alloys [J]. Mater. Des., 2016, 95: 225
doi: 10.1016/j.actbio.2016.03.047 pmid: 27045349
18 Hua N B, Chen W Z, Wang Q T, et al. Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications [J]. J. Alloys Compd., 2018, 745: 111
19 Wen P, Li C F, Zhao Y, et al. First principles calculation of occupancy, bonding characteristics and alloying effect of Cr, Mo, Ni in bulk α-Fe(C) [J]. Acta Phys. Sin., 2014, 63(19): 197101
19 文 平, 李春福, 赵 毅等. Cr, Mo, Ni在α-Fe(C)中占位、键合性质及合金化效应的第一性原理研究 [J]. 物理学报, 2014, 63(19):197101
20 Li L, Xing S B. Catalytic effect analysis of metallic catalyst during diamond single crystal synjournal [J]. Acta Metall. Sin. (Engl. Lett)., 2014, 27: 161
21 Wang Y F, Li Y K, Sun C, et al. Electronic theoretical model of static and dynamic strength of steels [J]. Acta Phys. Sin., 2014, 63(12): 126101
21 王云飞, 李云凯, 孙 川等. 钢动静态强度计算的电子理论模型 [J]. 物理学报, 2014, 63(12): 126101
22 Wang Y, Li C F, Lin Y H. Electronic theoretical study of the influence of Cr on corrosion resistance of Fe-Cr Alloy [J]. Acta Metall. Sin., 2017, 53: 622
22 王 垚, 李春福, 林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究 [J]. 金属学报, 2017, 53: 622
23 Souza C A C, Ribeiro D V, Kiminami C S. Corrosion resistance of Fe-Cr-based amorphous alloys: An overview [J]. J. Non-Cryst. Solids, 2016, 442: 56
24 Huang C B, Lu Z P, Yang W. Anodic dissolution and passiyation of an Fe-Ni base alloy in hot concentrated caustic solutions [J]. Corros. Sci. Pro. Technol., 2001, 13(Suppl.): 514
24 黄春波, 吕战鹏, 杨 武. Fe-Ni基合金在热浓碱溶液中的阳极溶解与钝化行为 [J]. 腐蚀科学与防护技术, 2001, 13(增刊): 514
25 Chen P, Qin F X, Zhang H F, et al. Corrosion behaviors of bulk amorphous alloy Cu-Zr-Ti-Sn and its crystallized form in 3.5% NaCl solution [J]. Acta Metall. Sin., 2004, 40: 207
25 陈 鹏, 秦凤香, 张海峰等. 块状非晶合金Cu-Zr-Ti-Sn在3.5%NaCl溶液中的腐蚀行为 [J]. 金属学报, 2004, 40: 207
26 Hu Y P, Ping K B, Yan Z J, et al. First-principles calculations of structure and magnetic properties of α-Fe(Si) phase precipitated in the Finemet alloy [J]. Acta Phys. Sin., 2011, 60(10): 107504
26 胡玉平, 平凯斌, 闫志杰等. Finemet合金析出相α-Fe(Si)结构与磁性的第一性原理计算 [J]. 物理学报, 2011, 60(10): 107504
27 Han Y, Kong F L, Han F F, et al. New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application [J]. Intermetallics, 2016, 76: 18
28 Machmeier P, Matuszewski T, Jones R, et al. Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I [J]. J. Mater. Eng. Perform., 1997, 6: 279
29 Botta W J, Berger J E, Kiminami C S, et al. Corrosion resistance of Fe-based amorphous alloys [J]. J. Alloys Compd., 2014, 586(Suppl. 1): S105
30 Qu S P, Cheng B Z, Dong L H, et al. Corrosion behavior of 2205 steel in simulated hydrothermal area [J]. Acta Metall. Sin., 2018, 54: 1094
30 屈少鹏, 程柏璋, 董丽华等. 2205钢在模拟深海热液区中的腐蚀行为 [J]. 金属学报, 2018, 54: 1094
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[12] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.