Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 689-697    DOI: 10.11900/0412.1961.2015.00500
  论文 本期目录 | 过刊浏览 |
第二相对镁基材料微弧氧化过程的影响机制*
王艳秋1(),吴昆2,王福会1,3
1 哈尔滨工程大学超轻材料与表面技术教育部重点实验室, 哈尔滨 150001
2 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
3 中国科学院金属研究所, 沈阳 110016
EFFECTS OF SECOND PHASES ON MICROARC OXIDATION PROCESS OF MAGNESIUM BASE MATERIALS
Yanqiu WANG1(),Kun WU2,Fuhui WANG1,3
1) Education Ministry Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Harbin 150001, China
2) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王艳秋,吴昆,王福会. 第二相对镁基材料微弧氧化过程的影响机制*[J]. 金属学报, 2016, 52(6): 689-697.
Yanqiu WANG, Kun WU, Fuhui WANG. EFFECTS OF SECOND PHASES ON MICROARC OXIDATION PROCESS OF MAGNESIUM BASE MATERIALS[J]. Acta Metall Sin, 2016, 52(6): 689-697.

全文: PDF(939 KB)   HTML
  
摘要: 

对含有不同类型第二相的镁基材料进行微弧氧化处理, 研究基体材料第二相对其微弧氧化行为的影响规律及其影响机制. 利用SEM观察第二相在微弧氧化初期阶段的存在状态, 并结合EDS分析第二相的成分及状态变化; 通过不同镁基材料在微弧氧化过程中的电压演变趋势分析第二相对微弧氧化行为的影响. 根据微弧氧化膜的生长原理, 将膜层的生长过程简化等效为一个电容器的反复击穿-重构过程, 并依此讨论了微弧氧化膜的形成过程及第二相的影响机理. 结果表明, 第二相对镁基材料微弧氧化行为的影响与其自身特性密切相关; 在微弧氧化的初期阶段, 第二相是否具备阀金属特性及其导电特性是影响微弧氧化行为的重要因素. 对于具备阀金属特性的第二相, 由于其表面能够形成火花放电所必须的阻挡层, 因此第二相的存在不会对微弧氧化行为产生明显影响. 对于不具备阀金属特性的第二相, 其导电特性决定了镁基材料在微弧氧化初期阶段能否正常发生火花放电并顺利进入膜层生长阶段.

关键词 镁合金金属基复合材料第二相微弧氧化阻挡层    
Abstract

The effects of second phases on microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) behavior of Mg base materials were investigated and the related mechanism was discussed. The formation of barrier layer and its influence on sparking discharge behavior were characterized and analyzed on the base of systematic selecting and designing substrate materials. The variation of second phases at the early MAO stage was observed and analyzed by SEM and EDS, and then the effect mechanism of second phases on MAO behaviors was revealed. Voltage evolution trend during MAO were recorded to study the formation state of the barrier layer on the different Mg base materials. According to the growth mechanism of MAO film, the film growth process can be simplistically considered as a repeated breakdown and reconstruction process of a capacitor. Accordingly, the growth process of MAO film on multiphase metal materials and the effects of second phases were discussed. The results show that different second phases in substrate materials have different effects on formation process of MAO films, depending on their own characteristics. For the second phases which have the characteristics of valve metals, although selective sparking discharge occurs at the early stage of MAO, the second phases will not hinder the growth of MAO film since barrier layer can form on the second phases, and they will not induce structural defects into the film-substrate interface. If the second phases have not the characteristics of valve metals, their conductivity property will be an important influencing factor to affect the MAO behaviors. For the elecinsulating second phases which have not the characteristics of valve metals, sparking discharge just occurs on Mg matrix in the substrate, while doesn't occur on the second phases; the second phases exist in the MAO film as heterogeneous phases, do not react in MAO process, and will not hinder the growth of MAO film. For the semi-conductive second phases which have not the characteristics of valve metals, they delay the growth of MAO film because they destroy the integrity of barrier layer. For the electroconductive second phases which have not the characteristics of valve metals, they seriously hinder the growth of MAO film.

Key wordsmagnesium alloy    metal matrix composite    second phase    microarc oxidation    barrier layer
收稿日期: 2015-09-25     
基金资助:* 国家自然科学基金项目51001036和国家国际科技合作专项项目2014DFR50560资助
图1  铸态AZ91D镁合金的SEM像
图2  AZ91D镁合金微弧氧化初期形貌的SEM像
图3  Al18B4O33w/AZ91D镁基复合材料微弧氧化初期形貌的SEM像
图4  SiCw/AZ91D镁基复合材料微弧氧化初期形貌的SEM像
图5  SiCw/AZ91D镁基复合材料微弧氧化60 s时表面不同部位的EDS结果
图6  (Cf+Al18B4O33w)/AZ91D复合材料在微弧氧化处理前后表面形貌的SEM像
图7  不同镁基材料在恒电流模式下进行微弧氧化处理时的电压随时间变化曲线
图8  微弧氧化膜形成原理示意图
Substrate material 20 mAcm-2 40 mAcm-2 60 mAcm-2 80 mAcm-2
R / (Vs-1) U / V R / (Vs-1) U / V R / (Vs-1) U / V R / (Vs-1) U / V
AZ91D 3.1 219 6.0 369 9.2 407 10.2 416
Al18B4O33w/AZ91D 3.6 207 6.2 358 8.3 408 9.2 426
SiCw/AZ91D 1.2 188 2.4 256 3.8 312 5.8 374
(Cf+Al18B4O33w)/AZ91D - 33 - 74 - 166 - 155
表1  镁基材料在微弧氧化初期的电压升高速率R和稳态电压U随电流密度的变化
[1] Van T B, Brown S D, Wirtz G P.Ceram Bull, 1977; 56: 563
[2] Ikonopisov S.Electrochim Acta, 1977; 22: 1077
[3] Srinivasan P B, Liang J, Blawert C, Stormer M, Dietzel W.Appl Surf Sci, 2009; 255: 4212
[4] Li X J, Cheng G A, Xue W B, Zheng R T, Cheng Y J.Mater Chem Phys, 2008; 107: 148
[5] Wang Y M, Lei T Q, Jiang B L, Guo L X.Appl Surf Sci, 2004; 233: 258
[6] Verdier S, Boinet M, Maximovitch S, Dalard F.Corros Sci, 2005; 47: 1429
[7] Krishtal M M.Met Sci Heat Treat, 2004; 46: 378
[8] Khaselev O, Weiss D, Yahalom J.Corros Sci, 2001; 43: 1295
[9] Khaselev O, Yahalom J.Corros Sci, 1998; 40: 1149
[10] Hsiao H Y, Tsai W T.J Mater Res, 2005; 20: 2763
[11] Zhu Q Z, Xue W B, Lu L, Du J C, Liu G J, Li W F.Acta Metall Sin, 2011; 47: 74
[11] (朱庆振, 薛文斌, 鲁亮, 杜建成, 刘贯军, 李文芳. 金属学报, 2011; 47: 74)
[12] Xue W B.Appl Surf Sci, 2006; 252: 6195
[13] Xue W B, Wu X L, Li X J, Tian H.J Alloys Compd, 2006; 425: 302
[14] Xue W B, Jin Q, Zhu Q Z, Hua M, Ma Y Y. J Alloys Compd, 2009; 482: 208
[15] Arrabal R, Matykina E, Skeldon P, Thompson G E.Appl Surf Sci, 2009; 255: 5071
[16] Arrabal R, Pardo A, Merino M C, Mohedano M, Casajús P, Matykina E, Skeldon P, Thompson G E. Corros Sci, 2010; 52: 3738
[17] Hihara L H, Latanision R M.Int Mater Rev, 1994; 39: 245
[18] Trzaskoma P P, McCafferty E, Crowe C R.J Electrochem Soc, 1983; 130: 1804
[19] Pohlman S L.Corrosion, 1978; 34: 156
[20] Turhan M C, Li Q Q, Jha H, Singer R F, Virtanen S.Electrochim Acta, 2011; 56: 7141
[21] Xue W B.Acta Metall Sin, 2006; 42: 350
[21] (薛文斌. 金属学报, 2006; 42: 350)
[22] Wang Y Q, Wang X J, Zhang T, Wu K, Wang F H.J Mater Sci Technol, 2013; 29: 1129
[23] Wang Y Q, Wang X J, Wu K, Wang F H.J Mater Sci Technol, 2013; 29: 267
[24] Wang Y Q, Wang X J, Gong W X, Wu K, Wang F H.Appl Surf Sci, 2013; 283: 906
[25] Liu R, Weng N, Xue W B, Hua M, Liu G J, Li W F. Surf Coat Technol, 2015; 269: 212
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[9] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[12] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[13] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[14] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[15] 朱士泽, 王东, 王全兆, 肖伯律, 马宗义. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 2021, 57(7): 928-936.