Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 463-472    DOI: 10.11900/0412.1961.2015.00286
  论文 本期目录 | 过刊浏览 |
累积叠轧Mg/Al多层复合板材的织构演变及力学性能*
李眉娟1,刘晓龙1,刘蕴韬1,郑明毅2,王琛2,陈东风1()
1 中国原子能科学研究院核物理研究所, 北京 102413
2 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
TEXTURE EVOLUTION AND MECHANICAL PROPER-TIES OF Mg/Al MULTILAYERED COMPOSITE SHEETSPROCESSED BY ACCUMULATIVE ROLL BONDING
Meijuan LI1,Xiaolong LIU1,Yuntao LIU1,Mingyi ZHENG2,Chen WANG2,Dongfeng CHEN1()
1 Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

李眉娟,刘晓龙,刘蕴韬,郑明毅,王琛,陈东风. 累积叠轧Mg/Al多层复合板材的织构演变及力学性能*[J]. 金属学报, 2016, 52(4): 463-472.
Meijuan LI, Xiaolong LIU, Yuntao LIU, Mingyi ZHENG, Chen WANG, Dongfeng CHEN. TEXTURE EVOLUTION AND MECHANICAL PROPER-TIES OF Mg/Al MULTILAYERED COMPOSITE SHEETSPROCESSED BY ACCUMULATIVE ROLL BONDING[J]. Acta Metall Sin, 2016, 52(4): 463-472.

全文: PDF(1619 KB)   HTML
摘要: 

以商业纯Mg和AA1050 Al板材为初始材料, 采用累积叠轧技术在室温下进行不同轧制道次变形制备了Mg/Al多层复合板材料, 并对3 cyc轧制的Mg/Al多层复合板材料在200 ℃分别进行不同时间退火处理. 利用OM, SEM和中子衍射技术对微观组织和宏观织构进行了研究. 结果表明, 复合板材中Mg和Al层组织均随着循环次数的提高而细化; 在200 ℃时随着退火时间的增加, 晶粒逐渐均匀但没有明显长大. 累积叠轧过程中Mg层主要呈现出典型的轧制织构类型, Al层则表现出以轧制织构组分为主, 同时伴有剪切织构组分的混合织构类型. 对于3 cyc轧制的Mg/Al多层复合板材, 在200 ℃经不同时间退火后, Mg层依然为轧制织构类型, Al层为轧制织构与剪切织构组分混合. 随着累积叠轧循环道次的增加, 屈服强度和抗拉强度都逐渐上升.

关键词 Mg/Al多层复合板累积叠轧体织构中子衍射    
Abstract

Mg and its alloys are regarded as potential candidates to replace steel and other heavier materials in some applications due to low density and high specific strength. However, the application of Mg alloys is limited because of their low strength, poor formability and corrosion resistance. Grain refinement and Mg-Al composite have been applied successfully to improve the strength and formability of Mg alloys. The accumulative roll bonding (ARB) is one kind of severe plastic deformation process which can produce bulk ultra-fine grained metallic materials. In the present work, the ultra-fine grained alternative Mg/Al multilayered composite sheets were fabricated at room temperature by ARB process using commercial pure Mg and AA1050 Al sheets up to 3 cyc. Some of Mg/Al sheets after 3 cyc ARB were annealed at 200 ℃ for 15, 60 and 90 min, respectively. The microstructure of ARBed sheets were invesgated by OM and SEM. The global texture evolution of these ARBed sheets were measured by neutron diffraction. It is found that the grains in both Mg and Al layers are refined gradually with the increase of ARB cycles. Although the grains in the Mg layers didn't grow up obviously after annealing at 200 ℃ for different times, the homogeneity of the microstructure was improved. The Mg layers of ARBed sheets showed typical rolling texture which enhanced with the increase cycle of ARB process up to 2 cyc and decreased sligthly after 3 cyc. The Al layers exhibited a combination texture types of rolling and shear texture, including Copper, S, Brass and rotated cube (RC) texture components. After 200 ℃ annealing, the Mg layers remained typical rolling texture component and it's intensity enhanced significantly after 15 min annealing and kept stable during the following annealing processing. The Al layers maintained a combination of rolling and shear texture components, the intensity of rolling components became stronger after 15 min annealing, then decreased after 60 and 90 min annealing. The yield strength and tensile strength were improved while the ARB cycle increased.

Key wordsMg/Al multilayered composite sheet    accumulative roll bonding (ARB)    bulk texture    neutron diffraction
收稿日期: 2015-05-28     
基金资助:* 国家自然科学基金项目11105231和11205248资助
图1  不同道次累积叠轧Mg/Al多层复合板的SEM像
图2  不同道次累积叠轧Mg/Al多层复合板Mg层的OM像
图3  3 cyc轧制的Mg/Al多层复合板在200 ℃退火不同时间后Mg层的OM像
图4  不同轧制道次Mg/Al复合板中Mg层(0002)面极图
图5  不同道次累积叠轧Mg/Al复合板中Al层宏观织构取向分布函数(ODF)图
图6  不同道次累积叠轧Mg/Al复合板中Al层主要织构取向线强度的变化
Cycle Yield strength Tensile strength
cyc MPa MPa
0 140 183
1 160 199
2 169 211
3 174 220
表1  不同ARB道次制备的Mg/Al多层复合板的室温力学性能
图7  经3 cyc ARB工艺的Mg/Al复合板在200 ℃退火不同时间后Mg层(0002)面极图
图8  3 cyc轧制的Mg/Al复合板中Al层织构ODF图
[1] Yang Z, Li J P, Zhang J X, Lonmer G W, Robson J.Acta Metall, 2008; 21: 313
[2] Saito Y, Utsunomiya H, Tsuji N, Sakai T.Acta Mater, 1999; 47: 579
[3] Koizumi Y, Ueyama M, Tsuji N, Minamino Y, Ota K.J Alloys Compd, 2003; 355: 47
[4] Wang Y Q, Hou H L, Li Z Q.J Plast Eng, 2006; 5(13): 45
[4] (王耀奇, 侯红亮, 李志强. 塑性工程学报, 2006; 5(13): 45)
[5] Xu R C, Tang D, Ren X P, Wang X H, Wen Y H.Rare Met, 2007; 26: 230
[6] Yang D, Cizek P, Hodgson P, Wen C.Scr Mater, 2010; 62: 321
[7] Chang H, Zheng M Y, Gan W M, Xu C, Brokmeier H G.Rare Met Mater Eng, 2013; 42: 0441
[8] Chino Y, Mabuchi M.Scr Mater, 2009; 60: 447
[9] Tsuji N, Saito Y, Lee S H, Minamino Y.Adv Eng Mater, 2005; 5: 338
[10] Huang X, Tsuji N, Hansen N, Minamino Y.Mater Sci Eng, 2003; A340: 265
[11] Li B L, Tsuji N, Kamikawa N.Mater Sci Eng, 2006; A423: 331
[12] Kamikawa N, Sakai T, Tsuji N.Acta Mater, 2007; 55: 5873
[13] Sakai T, Hamada S, Saito Y.Scr Mater, 2001; 44: 2569
[14] Pérez-Prado M T, Del Valle J A, Ruano O A.Scr Mater, 2004; 51: 1093
[15] Zhan M Y, Li Y Y, Chen W P, Chen W D.J Mater Sci, 2007; 42: 9256
[16] Jiang L, Pérez-Prado M T, Gruber P A, Arzt E, Ruano O A, Kassner M E.Acta Mater, 2008; 56: 1228
[17] Terada D, Inoue S, Tsuji N.J Mater Sci, 2007; 42: 1673
[18] Del Valle J A, Pérez-Prado M T, Ruano O A. Mater Sci Eng, 2005; A410-411: 353
[19] Pérez-Prado M T, Del Valle J A, Ruano O A.Scr Mater, 2004; 50: 667
[20] Chang H, Zheng M Y, Wu K, Gan W M, Tong L B, Brokmeier H G.Mater Sci Eng, 2010; A527: 7176
[21] Ion S E, Humpreys F J, White S H.Acta Mater, 1982; 30: 1909
[22] Del Valle J A, Pérez-Prado M T, Ruano O A.Mater Sci Eng, 2003; A355: 68
[23] Barnett M R, Nave M D, Bettles C J.Mater Sci Eng, 2004; A386: 205
[24] Huang X S, Suzuki K, Watazu A, Shigematsu I, Satio N.J Alloys Compd, 2008; 457: 408
[25] Kamikawa N, Tsuji N, Minamino Y.Sci Technol Adv Mater, 2004; 5: 163
[26] Li S, Sun F, Li H.Acta Mater, 2010; 58: 1317
[27] Skrotzki W, Hunsche I, Huttenrauch J, Oertel C G, Brokmeier H G, Hoppel H W, Topic I.Textures and Microstructures, 2008; 8: 1
[28] Raei M, Toroghinejad M R, Jamaati R, Szpunar J A.Mater Sci Eng, 2010; A527: 7068
[29] Chang H.PhD Dissertation, Harbin Institute of Technology, 2011
[29] (常海. 哈尔滨工业大学博士学位论文, 2011)
[30] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier Science Ltd, 2004: 1
[31] Chang H, Zheng M Y, Xu C, Fan G D, Brokmeier H G, Wu K.Mater Sci Eng, 2012; A543: 249
[32] Gatti J R, Bhattacharjee P P.J Mater Eng Perform, 2014; 23: 4453
[1] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[3] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[4] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[5] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[6] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[7] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[8] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[9] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[10] 常海,郑明毅,甘为民. 室温累积叠轧Mg/Al多层复合板材的界面表征[J]. 金属学报, 2017, 53(2): 220-226.
[11] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[12] 张孟,刘丹敏,刘翠秀,黄清镇,王少博,张虎,岳明. Mn1.2Fe0.8P0.76Ge0.24磁制冷材料相变过程与磁性能关系的研究[J]. 金属学报, 2013, 49(7): 783-788.
[13] 詹美燕,李春明,张卫文. 累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J]. 金属学报, 2012, 48(6): 709-616.
[14] 蒋文春 Woo Wanchuck 王炳英 涂善东. 中子衍射和有限元法研究不锈钢复合板补焊残余应力[J]. 金属学报, 2012, 48(12): 1525-1529.
[15] 吴尔冬 郭秀梅 孙凯. Laves相合金氘化物Ti0.68Zr0.32MnCrD3.0中氘占位的中子衍射研究[J]. 金属学报, 2009, 45(5): 513-518.