Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1525-1529    DOI: 10.3724/SP.J.1037.2012.00341
  论文 本期目录 | 过刊浏览 |
中子衍射和有限元法研究不锈钢复合板补焊残余应力
蒋文春1,2,Woo Wanchuck2,王炳英3,涂善东4
1. 中国石油大学(华东)化学工程学院重质油国家重点实验室, 青岛 266580
2. Korea Atomic Energy Research Institute, Daejeon, 305--353, South Korea
3. 中国石油大学(华东)机电工程学院, 青岛 266580
4. 华东理工大学机械与动力工程学院承压系统安全科学教育部重点实验室, 上海 200237
A STUDY OF RESIDUAL STRESS IN THE REPAIR WELD OF STAINLESS STEEL CLAD PLATE BY NEUTRON DIFFRACTION MEASUREMENT AND FINITE ELEMENT METHOD
JIANG Wenchun 1,2, WOO Wanchuck 2, WANG Bingying 3, TU Shan–Tung 4
1. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580
2. Korea Atomic Energy Research Institute, Daejeon, 305–353, South Korea
3. College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580
4. Key Laboratory of Pressure System and Safety (MOE), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237
引用本文:

蒋文春 Woo Wanchuck 王炳英 涂善东. 中子衍射和有限元法研究不锈钢复合板补焊残余应力[J]. 金属学报, 2012, 48(12): 1525-1529.
JIANG Wenchun WOO Wanchuck WANG Bingying TU Shan–Tung. A STUDY OF RESIDUAL STRESS IN THE REPAIR WELD OF STAINLESS STEEL CLAD PLATE BY NEUTRON DIFFRACTION MEASUREMENT AND FINITE ELEMENT METHOD[J]. Acta Metall Sin, 2012, 48(12): 1525-1529.

全文: PDF(1109 KB)  
摘要: 

利用中子衍射和有限元法分析不锈钢复合板补焊残余应力, 结果表明: 计算结果与测试结果具有一致性. 焊缝和热影响区产生了较高的残余应力, 远离热影响区, 残余应力逐渐降低.由于局部补焊加热, 沿厚度方向产生了弯曲应力; 在不锈钢覆层, 最大残余应力位于热影响区, 由于加工硬化的影响, 其值已超过屈服强度. 因此, 采用常规标准假设会使评定结果与实际存在差异, 利用中子衍射与有限元法相结合, 不仅可以准确获得残余应力大小, 而且可以获得沿厚度方向分布的残余应力, 满足安全评定标准有关处理焊接残余应力的要求.

关键词 不锈钢复合板 补焊 残余应力 中子衍射 有限元    
Abstract

Stainless steel clad plate is widely used in petrochemical engineering because of its high strength and good corrosion resistance, but there are cracks to be always generated in clad metal during the fabrication and service. Welding is often used to repair the cracked zone in stainless steel clad plates, but the residual stress is generated inevitably during welding, which has a great effect on their structure integrity. Chinese code, safety assessment for in–service pressure vessels containing defects, requires through–thickness stress distribution, and assumes that the secondary membrane stress induced by welding is equal to the yield stress, and the bending stress is zero. This work uses a combination of neutron diffraction method and finite element method (FEM) to determine the residual stress in the repair weld of a stainless steel clad plate. It is found that there is a good agreement between FEM and experimental results. The residual stress is concentrated in the heat affected zone (HAZ) of the weld metal, and decreases gradually far away from this zone. Due to the local heating input difference through thickness of the clad plate, a bending stress is generated in it. In the clad metal, the maximum stress is located at HAZ, which has exceeded the yield strength because of work hardening. Therefore, the assessment result based on the code assumption would lead to a big difference from the actual one. The combined use of FEM and neutron diffraction can obtain both the stress values and through–thickness stress distribution, which meet the requirement how to treat the welding residual stress in the structure integrity assessment code.

Key wordsstainless steel clad plate    repair weld    residual stress    neutron diffraction    finite element method
收稿日期: 2012-06-08     
ZTFLH:  TG407  
基金资助:

国家自然科学基金项目51105380, 教育部博士点新教师基金项目20100133120008和山东省自然科学基金项目ZR2010AQ002资助

作者简介: 蒋文春, 男, 1980年生, 副教授

[1] Jiang W C, Xu X P, Gong J M, Tu S T. Nucl Eng Des, 2012; 246: 211

[2] Brown T B, Dauda T A, Truman C E, Smith D J, Memhard D, Pfeiffer W. Int J Pressure Vessels Piping, 2006; 83: 809

[3] Aloraier A, Al–Mazrouee A, Price J W H, Shehata T. Int J Pressure Vessels Piping, 2010; 87: 127

[4] Dong P, Hong J K, Bouchard P J. Int J Pressure Vessels Piping, 2005; 82: 258

[5] Hou J, Peng Q J, Takeda Y, Kuniya J, Shoji T. Corros Sci, 2010; 52: 3949

[6] Amirat A, Mohamed–Chateauneuf A, Chaoui K. Int J Pressure Vessels Piping, 2006; 83: 107

[7] Mochizuki M. Nucl Eng Des, 2007; 237: 107

[8] Chen H F, Ponter A R S, Ainsworth R A. Int J Pressure Vessels Piping, 2006; 83: 123

[9] Banahan B D. Int J Pressure Vessels Piping, 2008; 85: 191

[10] Pratihar S, Turski M, Edwards L, Bouchard P J. Int J Pressure Vessels Piping, 2009; 86: 13

[11] Stacey A, Barthelemy J Y, Leggatt R H, Ainsworth R A. Eng Fract Mech, 2000; 67: 573

[12] Murugan S, Rai S K, Kumar P V, Jayakumar T, Raj B, Bose M S C. Int J Pressure Vessels Piping, 2001; 78: 307

[13] Joseph A, Rai S K, Jayakumar T, Murugan N. Int J Pressure Vessels Piping, 2005; 82: 700

[14] George R, Mac B, Guowu S. Comput Struct, 2003; 81: 929

[15] Hossain S, Truman C E, Smith D J. Int J Pressure Vessels Piping, 2012; 93–94: 29

[16] Woo W C, Em V, Mikula P, An G B, Seong B S. Mater Sci Eng, 2011; A528: 4120

[17] Woo W C, Em V, Hubbard C R, Lee H J, Park K S. Mater Sci Eng, 2011; A528: 8021

[18] Cho J R, Lee B Y, Moon Y H, Van Tyne C J. J Mater Process Technol, 2004; 155–156: 1690

[19] Jiang W C, Chen H, Gong J M, Tu S T. Mater Sci Eng, 2011; A528: 4715

[20] Jiang W C, Zhang Y C, Woo W C. Int J Pressure Vessels Piping, 2012; 92: 56

[21] Sattari–Far I, Farahani M R. Int J Pressure Vessels Piping, 2009; 86: 723

[22] Deng D A, Kiyoshima S. Acta Metall Sin, 2010; 46: 195

(邓德安, 清岛祥一. 金属学报, 2010; 46: 195)

[23] Jiang W C, Wang B Y, Gong J M, Tu S T. Mater Des, 2011; 32: 2851

[24] Jiang W C, Gong J M, Tu S T, Li G C. Int J Pressure Vessels Piping, 2010; 87: 457

[25] Jiang W C, Yang B, Gong J M, Tu S T. Int J Pressure Vessels Piping, 2011; 133: 1

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[8] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[9] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[12] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[14] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[15] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.