|
|
室温累积叠轧Mg/Al多层复合板材的界面表征 |
常海1( ),郑明毅2,甘为民4 |
1 北京科技大学国家材料服役安全科学中心 北京 100083 2 哈尔滨工业大学材料学院 哈尔滨 150001 3 Institute of Materials Science and Engineering, Clausthal Unviersity of Technology, Clausthal-Zellerfeld D38678, Germany4 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching 85747, Germany |
|
Interface Characterization of the Mg/Al Laiminated Composite Fabricated by Accumulative Roll Bonding at Ambient Temperature |
Hai CHANG1( ),Mingyi ZHENG2,Guenter Brokmeier Heinz3,Weimin GAN4 |
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 2 School of Materials, Harbin Institute of Technology, Harbin 150001, China 3 Institute of Materials Science and Engineering, Clausthal Unviersity of Technology, Clausthal-Zellerfeld D38678, Germany 4 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching 85747, Germany |
引用本文:
常海,郑明毅,甘为民. 室温累积叠轧Mg/Al多层复合板材的界面表征[J]. 金属学报, 2017, 53(2): 220-226.
Hai CHANG,
Mingyi ZHENG,
Guenter Brokmeier Heinz,
Weimin GAN.
Interface Characterization of the Mg/Al Laiminated Composite Fabricated by Accumulative Roll Bonding at Ambient Temperature[J]. Acta Metall Sin, 2017, 53(2): 220-226.
[1] | Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103 | [2] | Valiev R Z, Estrin Y, Horita Z, et al.Producing bulk ultrafine-grained materials by severe plastic deformation[J]. JOM, 2006, 58(4): 33 | [3] | Saito Y, Tsuji N, Utsunomiya H, et al.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 1998, 39: 1221 | [4] | Saito Y, Utsunomiya H, Tsuji N, et al.Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process[J]. Acta Mater., 1999, 47: 579 | [5] | Lee S H, Saito Y, Tsuji N, et al.Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 2002, 46: 281 | [6] | del Valle J A, Pérez-Prado M T, Ruano O A. Accumulative roll bonding of a Mg-based AZ61 alloy [J]. Mater. Sci. Eng., 2005, A410-411: 353 | [7] | Kwan C, Wang Z R, Kang S B.Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100[J]. Mater. Sci. Eng., 2008, A480: 148 | [8] | Min G H, Lee J M, Kang S B, et al.Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process[J]. Mater. Lett., 2006, 60: 3255 | [9] | Ohsaki S, Kato S, Tsuji N, et al.Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process[J]. Acta Mater., 2007, 55: 2885 | [10] | Chen M C, Hsieh H C, Wu W T.The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite[J]. J. Alloys Compd., 2006, 416: 169 | [11] | Chen M C, Kuo C W, Chang C M, et al.Diffusion and formation of intermetallic compounds during accumulative roll-bonding of Al/Mg alloys[J]. Mater. Trans., 2007, 48: 2595 | [12] | Jamaati R, Toroghinejad M R, Najafizadeh A.An alternative method of processing MMCs by CAR process[J]. Mater. Sci. Eng., 2010, A527: 2720 | [13] | Dehsorkhi R N, Qods F, Tajally M.Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process[J]. Mater. Sci. Eng., 2011, A530: 63 | [14] | Amirkhanlou S, Jamaati R, Niroumand B, et al.Fabrication and characterization of Al/SiCp composites by CAR process[J]. Mater. Sci. Eng., 2011, A528: 4462 | [15] | Jamaati R, Amirkhanlou S, Toroghinejad M R, et al.Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods[J]. J. Mater. Eng. Perform., 2012, 21: 1249 | [16] | Karimi M, Toroghinejad M R.An alternative method for manufacturing high-strength CP Ti-SiC composites by accumulative roll bonding process[J]. Mater. Des., 2014, 59: 494 | [17] | Alizadeh M, Beni H A.Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model[J]. Mater. Res. Bull., 2014, 59: 290 | [18] | Ahmadi A, Toroghinejad M R, Najafizadeh A.Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process[J]. Mater. Des., 2014, 53: 13 | [19] | Mara N A, Beyerlein I J.Review: effect of bimetal interface structure on the mechanical behavior of Cu-Nb fcc-bcc nanolayered composites[J]. J. Mater. Sci., 2014, 49: 6497 | [20] | Beyerlein I J, Mara N A, Wang J, et al.Structure-property-functionality of bimetal interfaces[J]. JOM, 2012, 64(10): 1192 | [21] | Zhang H, Toda H, Qu P C, et al.Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography[J]. Acta Mater., 2009, 57: 3287 | [22] | Williams J J, Flom Z, Amell A A, et al.Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J]. Acta Mater., 2010, 58: 6194 | [23] | Chen Z J, Wu X, Hu H B, et al.Effect of individual layer shape on the mechanical properties of dissimilar Al alloys laminated metal composite sheets[J]. J. Mater. Eng. Perform., 2014, 23: 990 | [24] | Ma M, Huo P, Liu W C, et al.Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding[J]. Mater. Sci. Eng., 2015, A636: 301 | [25] | Motevalli P D, Eghbali B.Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding[J]. Mater. Sci. Eng., 2015, A628: 135 | [26] | Jamaati R, Toroghinejad M R.Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process[J]. Mater. Des., 2010, 31: 4508 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|