Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1160-1174    DOI: 10.11900/0412.1961.2019.00089
  综述 本期目录 | 过刊浏览 |
高温合金盘锻件制备过程残余应力的演化规律及机制
毕中南1,2(),秦海龙1,2,董志国3,王相平3,王鸣3,刘永泉3,杜金辉1,2,张继1,2
1. 钢铁研究总院高温合金新材料北京市重点实验室 北京 100081
2. 北京钢研高纳科技股份有限公司 北京 100081
3. 中国航发沈阳发动机研究所 沈阳110005
Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings
BI Zhongnan1,2(),QIN Hailong1,2,DONG Zhiguo3,WANG Xiangping3,WANG Ming3,LIU Yongquan3,DU Jinhui1,2,ZHANG Ji1,2
1. Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
2. CISRI-GAONA Co. , Ltd. , Beijing 100081, China
3. AECC Shenyang Engine Research Institute, Shenyang 110005, China
全文: PDF(23787 KB)   HTML
摘要: 

高温合金盘锻件制备工艺过程中形成的内部残余应力是涡轮盘件尺寸精度和使用稳定性的重要影响因素。本文综述了高温合金盘锻件内部残余应力的中子衍射法和轮廓法测试技术,以及残余应力在固溶淬火、时效热处理和零件加工过程的分布特征、演化规律和内在机制:高温合金盘锻件的内部残余应力主要源于淬火过程的温度梯度,以弦向和径向应力为主,沿截面轮廓呈“内拉外压”特征分布,其数值与淬火态合金的屈服强度相当;时效热处理后小部分残余应力通过塑性变形和蠕变释放;热处理过程中强化相的析出与残余应力演化存在显著交互影响;零件加工过程中,残余应力会随着加工余量脱离本体而被部分释放,残余应力在再平衡过程发生变化所引起的附加力矩是加工变形的主要原因。

关键词 高温合金残余应力中子衍射轮廓法涡轮盘锻件    
Abstract

Significant interior residual stresses, which were generated during the manufacture process, could affect the machining dimension precision and structural stability during the subsequent machining process and service operation in the superalloys component, such as turbine disk. In this paper, the neutron diffraction method and contour method are described for measuring the distribution of interior residual stresses. The distribution, evolution of interior residual stress, and its mechanism are analyzed during quenching, ageing heat treatment and machining process in superalloys disk forging. The residual stresses are mainly generated by the temperature gradient formed during rapid cooling after solution heat treatment. After quenching, the residual stresses in hoop direction and radial direction of disc forging are significant, and its distribution along the profile is characterized by "internal tension and external pressure". The magnitudes of the residual stresses are equivalent to the yield strength of as-quenched alloys at room temperature. Quenching-induced residual stresses are partially relieved during the ageing process due to plastic strain and creep-controlled dislocation rearrangement. The precipitation behavior of γ″ or γ′ phase during heat treatment has a significant interaction with the distribution and magnitude of residual stress. During the machining process, part of the residual stresses contributing to the equilibrium of the internal forces are removed along with the material. Additional moment caused by re-balance of residual stresses results in the serious consequences of distortion in the remaining body.

Key wordssuperalloy    residual stress    neutron diffraction    contour method    turbine disk
收稿日期: 2019-04-01     
ZTFLH:  TG115.23  
基金资助:国家自然科学基金项目(U1708253);国家重点研发计划项目(2017YFB0702901);深圳市科创委基础学科布局项目(JCYJ20160608161000821)
通讯作者: 毕中南     E-mail: bizhongnan@cisri.com.cn
Corresponding author: Zhongnan BI     E-mail: bizhongnan@cisri.com.cn
作者简介: 毕中南,男,1983年生,教授级高级工程师,博士

引用本文:

毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
Zhongnan BI, Hailong QIN, Zhiguo DONG, Xiangping WANG, Ming WANG, Yongquan LIU, Jinhui DU, Ji ZHANG. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings. Acta Metall Sin, 2019, 55(9): 1160-1174.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00089      或      https://www.ams.org.cn/CN/Y2019/V55/I9/1160

图1  各种残余应力测量方法的测量穿透与空间分辨率
图2  无应力试样和中子衍射测试盘锻件的光路示意图
图3  GH4169合金无应力标样和盘锻件的中子衍射谱
图4  涡轮盘锻件轮廓法测试残余应力的过程
图5  涡轮盘锻件油淬过程中不同位置的温度变化
图6  涡轮盘锻件油淬过程中温度场和不同方向应力场变化的有限元模拟结果

Alloy

Mass fraction of element / %Precipitation

σs

MPa

CCrNbTiAlMoWCoFeNim / %t / s
GH4169[28]0.0318.05.40.90.52.9--18.0Bal.16548367
GH4738[29]0.0319.5-3.11.34.3-13.5-Bal.2120658
GH4720Li[30]0.0216.0-5.02.52.81.215.0-Bal.422990
表1  几种典型盘锻件用高温合金的化学成分及组织性能特征[28,29,30]
图7  典型盘锻件用高温合金冷却过程中的收缩应变
图8  中子衍射法测得的盘锻件弦向残余应力分布
图9  中子衍射法测得的不同冷却条件GH4169合金盘锻件内部三维残余应力分布图
图10  GH4169合金盘锻件的中心孔气冷实验[31]
图11  时效过程中GH4169盘锻件中心位置残余应力的原位中子衍射测试结果[32]
图12  不同温度下固溶淬火态GH4169合金盘锻件等效残余应力与材料屈服强度
图13  GH4169合金不同温度下时效保温过程中收缩应变随时间的变化[38]
图14  GH4169合金720 ℃保温时效过程中的晶格常数变化及其与宏观体积变化的关联[38]
图15  残余应力作用下GH4169合金中γ″相析出行为的变化(TEM明场像,入射方向[001]γ)[32]
图16  GH4169合金盘锻件加工前后尺寸和残余应力测试点
图17  GH4169合金盘锻件中加工前后三向残余应力分布的中子衍射结果
图18  残余应力引起的盘件加工轴向变形及原理示意图
Residual stressΔσtop / MPaΔσbottom / MPa
Hoop76117
Radial111155
Axial731
表2  盘锻件加工前后外缘残余应力变化
[1] GuY F, CuiC Y, YuanY, , et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
[1] 谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
[2] ZhangB J, ZhaoG P, ZhangW Y, , et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227
[2] 张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227
[3] LuX D, DuJ H, DengQ. High temperature structure stability of GH4169 superalloy [J]. Mater. Sci. Eng., 2013, A559: 623
[4] DuJ H, LuX D, DengQ, , et al. High-temperature structure stability and mechanical properties of novel 718 superalloy [J]. Mater. Sci. Eng., 2007, A452-453: 584
[5] ZhuangJ Y, DuJ H, DengQ, , et al. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006: 1
[5] 庄景云, 杜金辉, 邓 群等. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006: 1)
[6] GengL, NaY S, ParkN K. Continuous cooling transformation behavior of Alloy 718 [J]. Mater. Lett., 1997, 30: 401
[7] DyeD, ConlonK T, ReedR C. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 [J]. Metall. Mater. Trans., 2004, 35A: 1703
[8] RistM A, JamesJ A, TinS, , et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459
[9] KaradgeM, GrantB, WithersP J, , et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds [J]. Metall. Mater. Trans., 2011, 42A: 2301
[10] FossB J, GrayS, HardyM C, , et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548
[11] WithersP J, BhadeshiaH K D K. Residual stress. Part 1 Measurement techniques [J]. Mater. Sci. Technol., 2001, 17: 355
[12] Aba-PereaP E, PirlingT, PreussM. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
[13] RolphJ, EvansA, ParadowskaA, , et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. C. R.Phys., 2012, 13: 307
[14] Ghasri-KhouzaniM, PengH, RoggeR, , et al. Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions [J]. Mater. Sci. Eng., 2017, A707: 689
[15] MasoudiS, AmirianG, SaeediE, , et al. The effect of quench-induced residual stresses on the distortion of machined thin-walled parts [J]. J. Mater. Eng. Perform., 2015, 24: 3933
[16] KrempaszkyC, WernerE A, StockingerM. Measurement of marcoscopic residual stress and resulting distortion during machining [A]. Proc.MS&T 2005 Iron & Steel Society and TMS [C]. Pittsburgh, PA, USA: TMS, 2005: 109
[17] WithersP J, BhadeshiaH K D K. Residual stress. Part 2 Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366
[18] ShenG S, CooperN, OttowN, , et al. Integration and automation of residual stress and service stress modeling for superalloy component design [A].Superalloy 2012 [C]. Hoboken, NJ: Wiley, 2012: 129
[19] RolphJ, PreussM, IqbalN, , et al. Residual stress evolution during manufacture of aerospace forgings [A].Superalloy 2012 [C]. Hoboken, NJ: Wiley, 2012: 881
[20] DahanY, NouveauS, GeorgesE, , et al. Residual stresses in Inconel 718 engine disks [J]. MATEC Web Conf., 2014, 14: 10003
[21] XuP G, TomotaY. Progress in materials characterization technique based on in situ neutron diffraction [J]. Acta Metall. Sin., 2006, 42: 681
[21] 徐平光, 友田阳. 原位中子衍射材料表征技术的进展 [J]. 金属学报, 2006, 42: 681
[22] DongP, WangH, LiJ, , et al. Residual stress in welded Beryllium ring by neutron diffraction and finite element modeling [J]. At. Energ. Sci. Technol., 2015, 49: 2255
[22] 董 平, 王 虹, 李 建等. 铍环焊接残余应力的中子衍射测试与有限元分析 [J]. 原子能科学技术, 2015, 49: 2255
[23] CollinsD M, D'SouzaN, PanwisawasC. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103
[24] AllenA J, HutchingsM T, WindsorC G, , et al. Neutron diffraction methods for the study of residual stress fields [J]. Adv. Phys., 1985, 34: 445
[25] SantistebanJ R, DaymondM R, JamesJ A, , et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst., 2006, 39: 812
[26] WagnerJ N, HofmannM, WimporyR, , et al. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis [J]. Mater. Sci. Eng., 2014, A618: 271
[27] PrimeM B. Cross-sectional mapping of residual stresses by measuring the surface contour after a cut [J]. J. Eng. Mater. Technol., 2001, 123: 162
[28] Oradei-BasileA, RadavichJ F. A current T-T-T Diagram for wrought alloy 718 [A]. Superalloys 718, 625 and Various Derivatives [C]. Pittsburgh, PA,USA: The Minerals, Metals & Materials Society, 1991: 325
[29] JianM, ChangK M, YangW H, , et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI [J]. Metall. Mater. Trans., 2001, 32A: 2441
[30] YaoZ H, DongJ X, ZhangM C, , et al. Influence of solution and stabilization heat treatment on carbide and gamma prime for super alloy GH738 [J]. Trans. Mater. Heat Treat., 2013, 34(10): 43
[30] 姚志浩, 董建新, 张麦仓等. 固溶及稳定化工艺对GH738合金碳化物和γ'相析出规律的影响 [J]. 材料热处理学报, 2013, 34(10): 43)
[31] QinH L, BiZ N, YuH Y, , et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
[32] QinH L, ZhangR Y, BiZ N, , et al. Study on the evolution of residual stress during the ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
[32] 秦海龙, 张瑞尧, 毕中南等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997
[33] ChaturvediM C, HanY F. Effect of particle size on the creep rate of superalloy Inconel 718 [J]. Mater. Sci. Eng., 1987, 89: L7
[34] KuoC M, YangY T, BorH Y, , et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 289
[35] RaoA, BouchardP J, NorthoverS M, , et al. Anelasticity in austenitic stainless steel [J]. Acta Mater., 2012, 60: 6851
[36] FiskM, IonJ C, LindgrenL E. Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment [J]. Comput. Mater. Sci., 2104, 82: 531
[37] CoakleyJ, MaD, FrostM, , et al. Lattice strain evolution and load partitioning during creep of a Ni-based superalloy single crystal with rafted γ′ microstructure [J]. Acta Mater., 2017, 135: 77
[38] QinH L, BiZ N, LiD F, , et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
[39] QinH L, BiZ N, YuH Y, , et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during Aging [J]. J. Alloys Compd., 2018, 740: 997
[40] MaK, GoetzR, SrivatsaS K. Modeling of residual stress and machining distortion in aerospace components [A]. ASM Handbook [M]. Volume22B, Ohio, United States: ASM, 2010: 386
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[3] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[4] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[5] 刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
[6] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[7] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.
[8] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[9] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[10] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[11] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[12] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[13] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[14] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.