Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 783-788    DOI: 10.3724/SP.J.1037.2012.00775
  论文 本期目录 | 过刊浏览 |
Mn1.2Fe0.8P0.76Ge0.24磁制冷材料相变过程与磁性能关系的研究
张孟1),刘丹敏1),刘翠秀1),黄清镇2),王少博1),张虎1),岳明3)
1) 北京工业大学固体微结构与性能研究所, 北京 100124
2) NIST Center for Neutron Research, National Institute of Standards and Technology,Gaithersburg, Maryland 20899
3) 北京工业大学材料科学与工程学院, 北京 100124
RESEARCH OF THE RELATIONSHIP BETWEEN PHASE TRANSITION PROCESS AND MAGNETIC PROPERTIES IN MAGNETIC REFRIGERATION MATERIAL Mn1.2Fe0.8P0.76Ge0.24
ZHANG Meng1), LIU Danmin1), LIU Cuixiu1), HUANG Qingzhen2), WANG Shaobo1), ZHANG Hu1), YUE Ming3)
1) Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124
2) NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
3) College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
引用本文:

张孟,刘丹敏,刘翠秀,黄清镇,王少博,张虎,岳明. Mn1.2Fe0.8P0.76Ge0.24磁制冷材料相变过程与磁性能关系的研究[J]. 金属学报, 2013, 49(7): 783-788.
ZHANG Meng, LIU Danmin, LIU Cuixiu, HUANG Qingzhen, WANG Shaobo, ZHANG Hu, YUE Ming. RESEARCH OF THE RELATIONSHIP BETWEEN PHASE TRANSITION PROCESS AND MAGNETIC PROPERTIES IN MAGNETIC REFRIGERATION MATERIAL Mn1.2Fe0.8P0.76Ge0.24[J]. Acta Metall Sin, 2013, 49(7): 783-788.

全文: PDF(1097 KB)  
摘要: 

利用机械合金化(MA)结合放电等离子烧结(SPS)技术, 制备了Mn1.2Fe0.8P0.76Ge0.24磁制冷材料,并采用SEM观察烧结样品的显微组织, 利用中子衍射、超导量子干涉磁强计(SQUID)、差示扫描量热仪(DSC)和X射线衍射(XRD)等手段对相变过程和磁热性能进行了研究.结果表明: 烧结样品显微组织均匀致密, Mn1.2Fe0.8P0.76Ge0.24化合物具有六方Fe2P型晶体结构.外加磁场和温度的变化都可以引起材料的磁热相变, 即顺磁相与铁磁相之间的可逆一级相变.材料的磁熵变与相转变的程度有密切关系, 随着外加磁场的增大或温度的降低,合金由顺磁相向铁磁相转变, 从而使材料磁熵变增大. 分析发现,材料的磁熵变大小与相转变过程中发生转变的相变百分比是直接对应的,温度诱导相变与磁场诱导相变所得结果一致.

关键词 磁制冷材料磁热相变过程中子衍射    
Abstract

In recent years, the MnFePGe compound has drawn tremendous attention not only for its excellent magnetocaloric effect (MCE), but also for its great commercial interest.Compared with other advanced MCE materials such as GdSiGe, MnFePAs, etc.,it possesses many practical advantages such as more abundant raw materials,lower fabrication costs as well as better environmental amity. In this work, Mn1.2Fe0.8P0.76Ge0.24 compound was prepared by mechanical milling and subsequent spark plasma sintering (SPS) technique, its microstructure was investigated by SEM, meanwhile the relationship between phase transition and the properties was investigated by neutrondiffraction, SQUID, DSC and XRD. The results show that the Mn1.2Fe0.8P0.76Ge0.24 compound is compact, and possess a hexagonal Fe2P-type crystal structure. Generally, either applied magnetic field or temperature change will induce the transformation between paramagnetic phase and ferromagnetic phase. When the applied magnetic field increased or temperature reduced, paramagnetic phase transformed to ferromagnetic phase and caused the magnetic entropy change to become larger. It is found that the magnetic entropy change of Mn1.2Fe0.8P0.76Ge0.24 compound is directly corresponding to the percentage of the phase transition.

Key wordsmagnetic refrigeration material    magnetic thermal phase transition process    neutron diffraction
收稿日期: 2012-12-25     
基金资助:

国家自然科学基金项目51071007和51171003, 国家重点基础研究发展计划项目2010CB833100, 北京自然科学基金项目1112005CSNS用户专项项目资助

作者简介: 张孟, 男, 1986年生, 硕士生

[1] Dan'kov S Y, Tishin A M, Pecharsky V K, Gschneidner K A. Phys Rev, 1998; 57B: 3478

[2] Pecharsky V K, Gschneidner K A.Phys Rev Lett, 1997; 78: 4494
[3] Hu F X, Shen B G, Sun J R.Appl Phys Lett, 2001; 78: 3675
[4] Tegus O, Bruck E, Buschowet K H J, de Boer F R. Nature, 2002; 415: 150
[5] Wang G F, Song L, Li F A, Ha S C L, Li X W, Tegus O. Acta Metall Sin, 2008; 43: 889
(王高峰, 松林, 李福安, 哈斯朝鲁, 李新文, 特古斯. 金属学报, 2008; 43: 889)
[6] Hu F X, Qian X L, Wang G J, Sun J R, Shen B G, Cheng Z H, Gao J. Chin Phys, 2005; 14: 2329
[7] Li F A, Song L, Bao L H, Ha S C L, Tegus O, Huang J H.Acta Metall Sin, 2008; 44: 371
(李福安, 松林, 包黎红, 哈斯朝鲁, 特古斯, 黄焦宏. 金属学报, 2008; 44: 371)
[8] Tegus O, Bruck E, Li X W, Zhang L, Dagula W, de Boer F R, Buschow K H J.J Magn Magn Mater, 2004; 272: 2389
[9] Kim Y K, Cho Y W. J Alloys Compd, 2005; 394: 19
[10] Tegus O, Lin G X, Dagula W, Fuquan B, Zhang L, Bruck E, de Boer F R,Buschow K H J. J Magn Magn Mater, 2005; 290: 658
[11] Hermann R P, Tegus O, Bruck E, Buschow K H J, de Boer F R, Long G J,Grandjean F. Phys Rev, 2004; 70B: 214425
[12] Tegus O, Koyama K, Her J L, Watanabe K, Bruck E, Buschow K H J,de Boer F R.Physica, 2007; 392B: 151
[13] Bruck E, Kamarad J, Sechovsky V, Arnold Z, Tegus O, de Boer F R.J Magn Magn Mater,2007; 310: e1008
[14] Tegus O, Fuquan B, Dagula W, Zhang L, Bruck E, Si P Z, de Boer F R,Buschow K H J.J Alloys Compd, 2005; 396: 6
[15] Thanh D T Cam, Bruck E, Tegus O, Klaasse J C P, Buschow K H J. J Magn Magn Mater,2007; 310: e1012
[16] Thanh D T, Bruck E, Tegus O, Klaasse J C P, Gortenmulder T J,Buschow K H J. J Appl Phys, 2006; 99: 1
[17] Li X W, Tegus O, Zhang L, Dagula W, Bruck E, Buschow K H J, de Boer F R.IEEE Trans Magn, 2003; 39: 3148
[18] Yue M, Li Z Q, Xu H, Huang Q Z, Liu X B, Liu D M, Zhang J X. J Appl Phys, 2010; 107: 09A939
[19] Dagula W, Tegus O, Fuquan B, Zhang L, Si P Z, Zhang M, Zhang W S,Bruck E, de Boer F R, Buschow K H J. IEEE Trans Magn, 2005; 41: 2778
[20] Qu Z Q, Wang G F, Lin S, Tegus O, Bruck E, Buschow K H J. J Phys: Condes Matter,2006; 18: 11577
[21] Bao Y M, Zhang K D. Magnetic Refrigeration Technology. Beijing: Chemical Industry Press, 2004: 69
(鲍雨梅, 张康达. 磁制冷技术. 北京: 化学工业出版社, 2004: 69)
[22] Feng H B, Zhou Y, Jia D C. Mater Sci Thchnol, 2003; 11: 327
(冯海波, 周玉, 贾德昌. 材料科学与工艺, 2003; 11: 327)
[23] Zhang J X, Liu K G, Zhou M L. Powder Metall Technol, 2002; 20: 129
(张久兴, 刘科高, 周美玲. 粉末冶金技术, 2002; 20: 129)
[24] Gao L, Miyamoto H.J Inorg Mater, 1997; 12: 129
(高濂, 宫本大树. 无机材料学报, 1997; 12: 129)
[25] Yamada H, Goto T. { Phys Rev, 2003; 68B: 184417
[1] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[3] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[4] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[5] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[6] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[7] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[8] 李眉娟,刘晓龙,刘蕴韬,郑明毅,王琛,陈东风. 累积叠轧Mg/Al多层复合板材的织构演变及力学性能*[J]. 金属学报, 2016, 52(4): 463-472.
[9] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[10] 蒋文春 Woo Wanchuck 王炳英 涂善东. 中子衍射和有限元法研究不锈钢复合板补焊残余应力[J]. 金属学报, 2012, 48(12): 1525-1529.
[11] 吴尔冬 郭秀梅 孙凯. Laves相合金氘化物Ti0.68Zr0.32MnCrD3.0中氘占位的中子衍射研究[J]. 金属学报, 2009, 45(5): 513-518.
[12] 徐平光; 友田阳 . 基于原位中子衍射表征技术的进展[J]. 金属学报, 2006, 42(7): 681-688 .
[13] 潘洪革;杜红林;陈长聘;韩秀锋;杨伏明. Y_3(Fe,M0)_(29)金属间化合物的结构特性[J]. 金属学报, 1998, 34(5): 473-482.
[14] 杨王玥;盛丽珍;孙祖庆;黄原定;毛卫民;张百生;叶春堂. 代位合金元素原子在Fe_3Al金属间化合物亚点阵占位的中子衍射研究[J]. 金属学报, 1996, 32(8): 799-804.
[15] 杨王玥;孙祖庆;黄原定;张百生;丁永凡;杨继廉. Cr原子在Fe_3Al金属间化合物亚点阵中占位测定[J]. 金属学报, 1994, 30(3): 104-108.