Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1273-1278    DOI: 10.11900/0412.1961.2015.00366
  本期目录 | 过刊浏览 |
镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为
王莉1(),周忠娇1,张少华1sup,降向冬2,楼琅洪1,张健1
2 北京北冶功能材料有限公司, 北京 100192
CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE
Li WANG1(),Zhongjiao ZHOU1,Shaohua ZHANG1,Xiangdong JIANG2,Langhong LOU1,Jian ZHANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Beijing Beiye Functional Materials Corporation, Beijing 100192
引用本文:

王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
Li WANG, Zhongjiao ZHOU, Shaohua ZHANG, Xiangdong JIANG, Langhong LOU, Jian ZHANG. CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE[J]. Acta Metall Sin, 2015, 51(10): 1273-1278.

全文: PDF(4652 KB)   HTML
摘要: 

选用第二代镍基单晶高温合金, 制备了平行于定向凝固方向且分别沿(100)面和(110)面的2组板式试样, 采用电火花方法在试样中心垂直于板面加工孔径为0.5 mm的圆孔. 采用室温到1100 ℃的冷热疲劳实验, 研究了冷热循环过程中不同晶体学平面的板式试样上圆孔周围裂纹萌生及扩展行为. 结果表明, 位于不同晶体学平面的板式试样中, 电火花方法加工圆孔周围产生了一薄层再铸层, 再铸层最厚处约15 mm. 板式试样所在晶体学平面对圆孔周围裂纹萌生及扩展行为影响显著. 冷热循环80 cyc后, (110)面试样中, 裂纹在与枝晶生长方向垂直的孔边产生, 之后迅速沿与枝晶生长方向呈45°角扩展. 而对于(100)面试样, 即使经过200 cyc冷热循环后孔边也未观察到裂纹, 造成此差异的本质原因是单晶高温合金晶体结构的各向异性导致的热应力差别与微观组织特征共同作用的结果.

关键词 镍基单晶高温合金晶体学取向热疲劳裂纹萌生及扩展    
Abstract

Ni-based single crystal (SX) superalloys are widely used for production of blades in gas turbines and aircraft engines for their superior mechanical performance at high temperatures. To obtain high cooling efficiency, most of the SX blades consist of thin wall with cooling holes. However, thermal fatigue cracks are usually observed in blades with this kind of structures. Thus, it must be valuable to investigate the crack initiation and propagation around a hole during thermal fatigue tests in a SX superalloy. In the present work a second generation SX Ni-based superalloy was used. Plate specimens that parallel to directional solidification (DS) direction and along (100) or (110) planes were prepared. A hole with diameter of 0.5 mm was drilled vertical to the surface in the middle of the plate by electro-discharge machining (EDM). Thermal fatigue tests were performed between room temperature and 1100 ℃. Effect of crystal orientation on the crack initiation and propagation was investigated and the reasons were analyzed. It was found that a thin recast layer was produced around holes of EDM drilled. The thickness of the recast layer was 15 mm in the maximum. Crystal orientation has great effect on the crack initiation sites and propagation kinetics. After 80 cyc thermal fatigue tests, in (110) specimens cracks initiated at the edge of the holes that vertical to the DS direction, then grew quickly and propagated along directions about 45° from the DS direction. After 200 cyc tests, cracks developed to more than 2 mm in length. While in (100) specimens no cracks could be observed even after 200 cyc thermal fatigue tests. This difference was mainly due to the combined effects of different thermal stress caused by the anisotropy of single crystals and of the microstructure characteristics.

Key wordsNi-based single crystal superalloy    crystal orientation    thermal fatigue    hole    crack initiation and propagation
    
基金资助:*国家自然科学基金项目51201164, 国家高技术研究发展计划项目2012AA03A511和国家重大科学仪器设备开发专项项目2012YQ22023304资助
图1  含圆孔的不同平面热疲劳镍基单晶高温合金样品示意图
图2  镍基单晶高温合金完全热处理后的OM像和γ’形貌
图3  经电火花打孔后镍基单晶高温合金(100)样品孔周围组织形貌
图4  (100)和(110)样品的圆孔周围裂纹扩展动力学曲线
图5  不同平面样品打孔后以及分别经室温至1100 ℃热疲劳实验不同周次后圆孔周围组织形貌及裂纹扩展形貌
[1] He G, Li J G, Mao X M, Fu H Z. Mater Rev, 1994; (1): 12 (何 国, 李建国, 毛协民, 傅恒志. 材料导报, 1994; (1): 12)
[2] Yue Z F, Yin Z Y, Yang Z G. Aeroengine, 1997; (4): 32 (岳珠峰, 尹泽勇, 杨治国. 航空发动机, 1997; (4): 32)
[3] Ohyszko A, Kubiak K, Sieniawski J. J Achievements Mater Manuf Eng, 2009; 32(1): 66
[4] Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 295
[5] Duhl D N, Cetel A D. US Pat, 4719080, 1988
[6] Harris K, Wahl J B. In: Strang A, Banks W M, Conroy R D, McColvin, Neal J C, Simpson S eds., Proc 5th Int Charles Parsons Turbine Conf, London: Cambridge University, 2000: 832
[7] Walston W S, O'hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 27
[8] Fuchs G E. J Mater Eng Perform, 2002; 11(1): 19
[9] Hollwarth B R, Dagan L. ASME J Eng Power, 1980; 102: 994
[10] McNally C A, Folkes J, Pashby I R. Mater Sci Technol, 2004; 20: 805
[11] Kim Y J, Kim S M. Int J Heat Mass Transfer, 2004; 47: 245
[12] Hou N X, Wen Z X, Du Z X, Yue Z F. Theor Appl Fract Mech, 2007; 47: 164
[13] Das D K, Pollock T M. J Mater Proc Technol, 2009; 209: 5661
[14] Zhou Z J, Wang L, Wen J L, Lou L H, Zhang J. J Alloys Compd, 2015; 628: 158
[15] Wang J L, Chen M H, Yang L L, Zhu S L, Wang F H. Corros Sci, 2015; 98: 530
[16] Alamn M Z, Satyanarayana D V V, Chatterjee D, Sarkar R, Das D K. Mater Sci Eng, 2015; A641: 84
[17] Wang L, Zhou Z J, Jiang W G, Wang D, Shen J, Lou L H. Chin J Mater Res, 2014; 28: 663 (王 莉, 周忠娇, 姜卫国, 王 迪, 申 健, 楼琅洪. 材料研究学报, 2014; 28: 663)
[18] Sabnis P A, Maziere M, Forest S, Arakere N K, Ebrahimi F. Int J Plast, 2012; 28: 102
[19] Li Y L, Yuan C, Guo J T. Acta Metall Sin, 2006; 42: 1056 (李友林, 袁 超, 郭建亭. 金属学报, 2006; 42: 1056)
[20] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. Rare Met Mater Eng, 2008; 37: 50 (夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 稀有金属材料与工程, 2008; 37: 50)
[21] Liu Y, Yu J J, Xu Y, Sun X F. Rare Met Mater Eng, 2009; 38: 59 (刘 源, 于金江, 徐 岩, 孙晓峰. 稀有金属材料与工程, 2009; 38: 59)
[22] Xiao X, Xu H, Qin X Z, Guo Y A, Guo J T, Zhou L Z. Acta Metall Sin, 2011; 47: 1129 (肖 旋, 许 辉, 秦学智, 郭永安, 郭建亭, 周兰章. 金属学报, 2011; 47: 1129)
[23] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233 (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)
[24] Zhao N R, Wang Z H, Li J G, Jin T, Sun X F, Yang H C, Hu Z Q. J Mater Eng, 2008; (2): 58 (赵乃仁, 王志辉, 李金国, 金 涛, 孙晓峰, 杨洪才, 胡壮麒. 材料工程, 2008; (2): 58)
[25] Li J R, Shi Z X, Yuan H L, Liu S Z, Zhao J Q, Han M, Liu W W. J Mater Eng, 2008; (12): 6 (李嘉荣, 史振学, 袁海龙, 刘世忠, 赵金乾, 韩 梅, 刘维维. 材料工程, 2008; (12): 6)
[26] Jia Y X, Jin T, Liu J L, Sun X F, Hu Z Q. Acta Metall Sin, 2009; 45: 1364 (贾玉贤, 金 涛, 刘金来, 孙晓峰, 胡壮麒. 金属学报, 2009; 45: 1364)
[27] Hu G X,Cai X,Rong Y H. Fundamentals of Materials Science. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2010: 431 (胡赓祥,蔡 珣,戎咏华. 材料科学基础 (第三版). 上海: 上海交通大学出版社, 2010: 431)
[28] Jin Z X. Central Iron Steel Res Inst Tech Bull, 1985; 5: 205 (金哲学. 钢铁研究总院学报, 1985; 5: 205)
[29] Academic Committee of the Superalloys,The Chinese Society for Metals. China Superalloys Handbook. Beijing: Standards Press of China, 2012 (中国金属学会高温材料分会编. 中国高温合金手册. 北京: 中国标准出版社, 2012)
[30] Chao J, Gonzalez-Carrasco J L. Mater Sci Eng, 1997; A230: 39
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[3] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[4] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[5] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[6] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[8] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[9] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[10] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[11] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[12] 曹凤婷, 魏洁, 董俊华, 柯伟, 王铁钢, 范其香. 羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为[J]. 金属学报, 2020, 56(6): 898-908.
[13] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[14] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[15] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.