Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 341-348    DOI: 10.11900/0412.1961.2014.00575
  本期目录 | 过刊浏览 |
冷床炉熔炼TC1合金轧制过程中组织演变与力学性能*
刘梦莹1, 常海1(), 徐锋2, 许正芳2, 杨昭2, 王宁2, 甘为民3, 冯强1,4()
1 北京科技大学国家材料服役安全科学中心, 北京 100083
2 宝钢特钢有限公司, 上海 200940
3 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching, Germany, 85747
4 北京科技大学新金属材料国家重点实验室, 北京 100083
MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF TC1 ALLOY FABRICATED BY PLASMA ARC COLD HEARTH MELTING DURING ROLLING PROCESS
LIU Mengying1, CHANG Hai1(), XU Feng2, XU Zhengfang2, YANG Zhao2, WANG Ning2, GAN Weimin3, FENG Qiang1,4()
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 Baosteel Special Metals Co., Ltd., Shanghai 200940
3 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching, Germany, 85747
4 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

刘梦莹, 常海, 徐锋, 许正芳, 杨昭, 王宁, 甘为民, 冯强. 冷床炉熔炼TC1合金轧制过程中组织演变与力学性能*[J]. 金属学报, 2015, 51(3): 341-348.
Mengying LIU, Hai CHANG, Feng XU, Zhengfang XU, Zhao YANG, Ning WANG, Weimin GAN, Qiang FENG. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF TC1 ALLOY FABRICATED BY PLASMA ARC COLD HEARTH MELTING DURING ROLLING PROCESS[J]. Acta Metall Sin, 2015, 51(3): 341-348.

全文: PDF(12869 KB)   HTML
摘要: 

以工业化等离子冷床炉熔炼的TC1合金为研究对象, 结合实际生产流程, 并借助于中子衍射技术, 研究不同轧制工艺对TC1板材显微组织与性能演变的影响, 揭示组织结构与力学性能之间的关系. 结果表明, 冷床炉熔炼的铸锭组织为魏氏组织. 经过轧制后, a集束发生扭曲和破碎. 单向轧制变形a相沿轧向排列比换向轧制更为明显. 退火后, 板材中变形a相发生等轴化. 经过单向轧制和换向轧制后, 轧制板材均表现为柱面织构类型, 这是板材横向屈服强度均明显高于其轧向屈服强度的主要原因.

关键词 等离子冷床炉TC1合金热轧显微组织织构力学性能    
Abstract

Plasma arc cold hearth melting (PAM) is an effective technology to produce high purity titanium alloy ingots which are widely used in aeronautic and astronautic industries. To date, the development of PAM in our country is still at initial stage. It is necessary to investigate the melting parameters of PAM and the following thermal mechanical processing of the ingots fabricated by PAM. In this study, the TC1 alloy ingots casted by PAM were cogged at b transus temperature and then rolled by unidirectional rolling and cross rolling in the a+b phase field. The typical widmanstatten structure of cast-ingots turned to transformed b morphology after cogging at b transus temperature in which the a phases forms in smaller colonies of laths. After the unidirectinal rolling in the a+b phase field, the a colonies were distorted and the a laths re-arranged along the rolling direction, while they had weaker directivity after cross rolling. The sheets rolled by both unidirectional and cross rolling showed typical prismatic texture. After annealing treatment below the b transus temperature, the a phases turned to equiaxial morphology. The ambient yield strength of the sheet in transverse direction was significantly higher than in rolling direction, which could be attributed to the strong prismatic texture introduced by hot rolling process.

Key wordsplasma arc cold hearth melting (PAM)    TC1 alloy    hot rolling    microstructure    texture    mechanical properties
    
ZTFLH:  TG146.23  
基金资助:*国家自然科学基金项目51201006和高等学校学科创新引智计划项目B12012资助
作者简介: null

刘梦莹, 女, 1990年生, 硕士生

图1  室温拉伸试样及轧板重要方向示意图
图2  等离子冷床炉熔炼(PAM)制备的TC1合金铸锭芯部的典型铸态OM像
图3  经过轧制开坯后TC1板材轧制面的典型OM像
图4  经过单向轧制和换向轧制的TC1板材的轧制面和纵截面的典型OM像
图5  经过单向轧制和换向轧制的TC1板材在750 ℃下保温30 min并空冷后轧制面和纵截面的典型OM像
图6  TC1铸锭经过轧制开坯后a 相{0002}, {1010}和{1120}全极图
图7  板材经过单向轧制和换向轧制后a相{0002}, {1010}和{1120}全极图
Rolling mode Sample position Yield strength
MPa
Ultimate strength
MPa
Elongation
%
UR RD 621±3 733±3 18.1±5.2
TD 747±9 755±8 15.6±0.1
CR RD 661±18 763±8 17.4±3.0
TD 745±6 761±5 21.1±4.3
表1  经过单向轧制和换向轧制后的TC1板材的轧向及横向的室温拉伸性能
Rolling mode Sample position Yield strength
MPa
Ultimate strength
MPa
Elongation
%
UR RD 561±4 671±10 31.7±0.2
TD 655±8 673±9 31.3±0.4
CR RD 524±24 667±2 26.1±1.0
TD 642±9 686±3 25.4±0.1
表2  经过单向轧制和换向轧制的TC1板材在750 ℃下保温30 min并空冷后的轧向及横向的室温拉伸性能
[1] Mo W. Titanium. Beijing: Metallugical Industry Press, 2008: 330
[1] (莫 畏. 钛. 北京: 冶金工业出版社, 2008: 330 )
[2] Ma J M,He J Y,Pang K C. Ingot and Forging of Titanium. Beijing: Metallugical Industry Press, 2012: 82
[2] (马济民,贺金宇,庞克昌. 钛铸锭和锻造. 北京: 冶金工业出版社, 2012: 82)
[3] Chinnis W R. Titanium 1990: Products and Application, 1990; 2: 830
[4] Tian Y X, Li S J, Hao Y L, Yang R. Acta Metall Sin, 2012; 48: 837
[4] (田宇兴, 李述军, 郝玉琳, 杨 锐. 金属学报, 2012; 48: 837)
[5] Zhang Z Q, Dong L M, Yang Y, Guan S X, Liu Y Y, Yang R. Acta Metall Sin, 2011; 47: 1257
[5] (张志强, 董利民, 杨 洋, 关少轩, 刘羽寅, 杨 锐. 金属学报, 2011; 47: 1257)
[6] Wang T, Guo H, Wang Y, Yao Z. Mater Sci Eng, 2010; A528: 736
[7] Ding R, Guo Z X, Wilson A. Mater Sci Eng, 2002; A327: 233
[8] Lütjering G. Mater Sci Eng, 1998; A243: 32
[9] Roy S, Karanth S, Suwas S. Metall Mater Trans, 2013; 44A: 3322
[10] Gurao N P, Ali A A, Suwas S. Mater Sci Eng, 2009; A504: 24
[11] You L, Song X P. Acta Metall Sin, 2008; 44: 1310
[11] (尤 力, 宋西平. 金属学报, 2008; 44: 1310)
[12] Qin G H, Wang W B, Ji B, Wu Y Y. Chin J Nonferrous Met, 2010; 20: 877
[12] (秦桂红, 王万波, 计 波, 吴英彦. 中国有色金属学报, 2010; 20: 877)
[13] Song J H, Hong K J, Ha T K, Jeong H T. Mater Sci Eng, 2007; A449-451: 144
[14] Zheng J M, Lei R Q. Titanium Industry Progress, 2008; 25(4): 27
[14] (郑建民, 雷让歧. 钛工业进展, 2008; 25(4): 27)
[15] Boehlert C J. Mater Sci Eng, 2000; A279: 118
[16] Mao W M,Yang P,Chen L. Analysis Principle of Texture and Testing Technique . Beijing: Metallugical Industry Press, 2008: 15
[16] (毛卫民,杨 平,陈 冷.材料织构分析原理与检测技术. 北京: 冶金工业出版社, 2008: 15)
[17] Philippe M J, Esling C, Hocheid B. Textures Microstruct, 1988; 7: 265
[18] Salem A A, Glavicic M G, Semiatin S L. Mater Sci Eng, 2008; A496: 169
[19] Warwick J L W, Jones N G, Bantounas I, Preuss M, Dye D. Acta Mater, 2013; 61: 1603
[20] Singh A K, Schwarzer R A. Mater Sci Eng, 2001; A307: 151
[21] Gey N, Humbert M, Philippe M J, Combres Y. Mater Sci Eng, 1996; A219: 80
[22] Russell A M, Chumbley L S, Ellis T W, Laabs F C, Norris B, Donizetti G E. J Mater Sci, 1995; 30: 4249
[23] Zhu Z S, Gu J L, Chen N P. Chin J Nonferrous Met, 1995; 5: 83
[23] (朱知寿, 顾家琳, 陈南平. 中国有色金属学报, 1995; 5: 83)
[24] Zhu Z S, Gu J L, Chen N P, Yang Z S. Mater Mech Eng, 1994; 18(6): 23
[24] (朱知寿, 顾家琳, 陈南平, 杨照苏. 机械工程材料, 1994; 18(6): 23)
[25] Lin P, Feng A, Yuan S, Li G, Shen J. Mater Sci Eng, 2013; A563: 16
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.