Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 249-256    DOI: 10.11900/0412.1961.2014.00285
  本期目录 | 过刊浏览 |
一种新型镍基耐蚀合金与625合金异种金属焊接接头的组织和力学性能*
赵霞1,2, 查向东2, 刘扬3, 张龙2, 梁田2, 马颖澈2(), 程乐明3
1 东北大学材料与冶金学院, 沈阳 110819
2 中国科学院金属研究所, 沈阳 110016
3 新奥科技发展有限公司, 廊坊 065001
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW CORROSION-RESISTING NICKEL-BASED ALLOY AND 625 ALLOY DISSIMILAR METAL WELDING JOINT
ZHAO Xia1,2, ZHA Xiangdong2, LIU Yang3, ZHANG Long2, LIANG Tian2, MA Yingche2(), CHENG Leming3
1 School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 ENN Science & Technology Development Co. Ltd., Langfang 065001
引用本文:

赵霞, 查向东, 刘扬, 张龙, 梁田, 马颖澈, 程乐明. 一种新型镍基耐蚀合金与625合金异种金属焊接接头的组织和力学性能*[J]. 金属学报, 2015, 51(2): 249-256.
Xia ZHAO, Xiangdong ZHA, Yang LIU, Long ZHANG, Tian LIANG, Yingche MA, Leming CHENG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW CORROSION-RESISTING NICKEL-BASED ALLOY AND 625 ALLOY DISSIMILAR METAL WELDING JOINT[J]. Acta Metall Sin, 2015, 51(2): 249-256.

全文: PDF(5875 KB)   HTML
摘要: 

对一种新型镍基耐蚀合金X-2#与625合金手工氩弧焊接接头进行拉伸性能和硬度的测试, 并结合OM, SEM和EDS分析等手段研究了焊接接头的组织和性能. 结果表明, X-2#/625异种金属焊接焊缝重熔区等轴晶组织增多, 有利于提高焊缝区强度. X-2#合金一侧熔合区组织过渡良好, 而625合金一侧晶界有NbC和Laves相析出, 影响材料的力学性能. 热影响区在靠近重熔区附近的晶粒由于受2次热循环的影响, 出现晶粒长大现象, 而X-2#合金一侧热影响区的热稳定性较好. 625合金母材晶粒细小导致其热影响区晶粒长大明显, 从而使625合金一侧热影响区的Vickers硬度值降低. X-2#/625焊接接头在室温到700 ℃下的抗拉强度均低于2侧母材, 焊缝区为接头最薄弱环节, 断口形貌均为韧窝状的韧性断口。

关键词 X-2#/625焊接接头焊缝区熔合区热影响区    
Abstract

With the fast development of industry, pollution becomes a very serious problem. The industrial and life wastewater are discharged and cause the environment pollution. Supercritical water oxidation (SCWO) becomes the most effective method to treat the wastewater. But the material used in the equipment plays a key role in restricting the application of the SCWO process. Currently, during the SCWO wastewater treatment process, 304 austenitic stainless steel, Alloy 625, P91 and P92 steels are the main preheater and reactor materials. In order to reduce the serious corrosion and improve economic efficiency of the materials for this process, a new corrosion resistant Ni-based alloy X-2# alloy has been developed with an aim of replacing the previous ones. In particular, it is highly important to the related behavior of this new alloy welding with the original SCWO. Therefore, the microstructure and mechanical properties of the welding joint of the new alloy and alloy 625 with manual argon arc welding were investigated. The microstructure and fracture morphologies of the welding joint were analyzed by OM, SEM and EDX. The micro-hardness, tensile strength and other mechanical properties were tested and analyzed. The results indicated that more isometric crystals in remelting zone to improve the welding seam strength and the microstructure in fusion zone of X-2# side did not show welding defects. However, some NbC and Laves phases formed near the fusion zone of 625 alloy sides, which affected the mechanical properties of material. Due to the influence of two thermal cycles near the remelting zone, the grains of heat affected zone (HAZ) were easy to grow. But the thermal stability of X-2# side HAZ could reach excellent level. Fine grains of 625 parent material led to grain growth seriously in HAZ, which reduced its Vickers hardness. Because of the tensile strength of welding joints of room temperature and 500 ℃ was lower than the parent materials, the welding seam could be the weakest link. The tesile fracture of X-2#/625 dissimilar metal welding joint was dimple morphology。

Key wordsX-2#/625 welding joint    welding seam    fusion zone    heat affected zone
收稿日期: 2014-05-27     
ZTFLH:  TG142.1  
作者简介: null

作者简介: 赵 霞, 女, 1989年生, 硕士生

Material C Si Cr Mo Al W Cu Fe Ti Nb Ni
X-2# ≤0.01 - 20.0 1.0 1.0 4.0 - 10.0 1.0 - Bal.
625 0.038 0.16 20/23 8~10 ≤0.40 - ≤0.50 ≤5.0 ≤0.40 3.0/4.2 Bal.
表1  母材的化学成分
图1  焊接接头显微硬度测试位置示意图
图2  拉伸试样尺寸示意图
图3  X-2#/625异种金属焊接接头母材的显微组织
图4  X-2#/625异种金属焊接接头焊缝区的显微组织
图5  X-2#/625异种金属焊接接头熔合区显微组织的OM像和析出物的SEM像
图6  625合金一侧熔合区析出物的SEM像和EDS分析
图7  X-2#/625异种金属焊接接头热影响区的显微组织
图8  X-2#/625异种金属焊接接头的显微硬度分布
Temperature ℃ Rm / MPa η
%
X-2# 625 X-2#/625
20 715 818 671 93.8
300 637 741 605 95.0
400 615 722 577 93.8
500 597 703 535 89.7
600 560 700 498 88.9
700 557 614 475 85.4
表2  X-2#/625 异种金属焊接接头在不同温度进行拉伸实验后的力学性能
图9  X-2#/625异种金属焊接接头在不同温度进行拉伸实验后的宏观形貌
图10  X-2#/625 异种金属焊接接头在20和500 ℃进行拉伸实验后的断口形貌
[1] Li F, Wang H F, Zhu D. Shanghai J Electr Power, 2002; 18(1): 19
[1] (李锋, 汪海峰, 朱丹. 上海电力学院学报, 2002; 18(1): 19)
[2] Zhang P, Wang J C, Zhang X D, Liu X W, Xia Y J, Li Z Y. Environ Prot Sci, 2003; 119(29): 15
[2] (张平, 王景昌, 张晓冬, 刘学武, 夏远景, 李志义. 环境保护科学, 2003; 119(29): 15)
[3] Xiang B T, Wang T. Prog Chem Ind, 1997; (3): 28
[3] (向波涛, 王涛. 化工进展, 1997; (3): 28)
[4] Xu J C, Xu B B, Jiang Y, Rong X S, Chen Z Y. Guangzhou Chem Ind, 2013; 41(9): 10
[4] (徐吉成, 徐滨滨, 蒋艳, 荣新山, 陈正宇. 广州化工, 2013; 41(9): 10)
[5] Ma D Z, Zhang L, Yin D, Chen G. Coal Technol, 2011; 30(1): 202
[5] (马东祝, 张玲, 尹迪, 陈光. 煤炭技术, 2011; 30(1): 202)
[6] Kritzer P. J Supercrit Fluids, 2004; 29: 1
[7] Garcia K M, Mizia R E. In: Dan S ed., ASME Heat Transfer Division, New York: American Society of Mechanical Engineers, 1995: 299
[8] Garcia K M. In: Charles H ed., International Mechanical Engineering Congress and Exhibition, New York: American Society of Mechanical Engineers, 1996: 17
[9] Tan L, Ren X, Allen T R. Corros Sci, 2010; 52: 1520
[10] Zhu F W, Zhang L F, Tang R, Qiao P P, Bao Y C. At Energy Sci Technol, 2010; 44(8): 979
[10] (朱发文, 张乐福, 唐睿, 乔培鹏, 鲍一晨. 原子能科学技术, 2010; 44(8): 979)
[11] Sun Y. Master Thesis, Shanghai Jiao Tong University, 2013
[11] (孙耀. 上海交通大学硕士学位论文, 2013)
[12] Sun C W, Hui R. Corros Sci, 2009; 51: 2508
[13] Chen Y, Sridharan K, Ukai S, Allen T R. J Nucl Mater, 2007; 371: 118
[14] Cho H S, Kimura A. J Nucl Mater, 2007; 367-370: 1180
[15] Isselin J, Kasada R, Kimura A. Corros Sci, 2010; 52: 3266
[16] Siwy A D, Clark T E, Motta A T. J Nucl Mater, 2009; 392: 280
[17] Was G S, Ampornrat P, Gupta G, Teysseyrea S, Westa E A, Allenb T R, Sridharanb K, Tanb L, Chenb Y, Renb X, Pister C. J Nucl Mater, 2007; 371: 176
[18] Wright L G, Dooley R B. Int Mater Rev, 2010; 55(3) :129
[19] Zhu F W, Zhang L F, Tang R, Qiao P P, Liu R Q. At Energy Sci Technol, 2009; 43(6): 39
[19] (朱发文, 张乐福, 唐睿, 乔培鹏, 刘瑞芹. 原子能科学技术, 2009; 43(6): 39)
[20] Was G S, Teysseyre S, Jiao Z. Corrosion, 2006; 62: 989
[21] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996
[22] Halvarsson M, Tang J E, Asteman H. Corros Sci, 2006; 48: 2014
[23] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 3056
[24] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[25] Zhang Q, Tang R, Yin K J, Luo X, Zhang L F. Corros Sci, 2009; 51: 2092
[26] Zhang Q, Tang R, Li C, Luo X, Yin K J. Nucl Eng Technol, 2009; 41(1): 107
[27] Li L. Master Thesis, Shanghai Jiao Tong University, 2012
[27] (李力. 上海交通大学硕士学位论文, 2012)
[28] Bao Y C. Master Thesis, Shanghai Jiao Tong University, 2011
[28] (鲍一晨. 上海交通大学硕士学位论文, 2011)
[29] Cieslak M J. Weld J, 1991; 70(2): 49
[30] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base Alloys. Hoboken: John Wiley & Sons Inc, 2009: 47
[1] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[2] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[3] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[4] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[5] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[6] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[7] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[8] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[9] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[10] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[11] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[12] 周峰, 赵霞, 查向东, 马颖澈, 刘奎. 一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能[J]. 金属学报, 2014, 50(11): 1335-1342.
[13] 赵霞, 刘扬, 查向东, 程乐明, 马颖澈, 刘奎. 一种新型镍基耐蚀合金焊接接头的组织与力学性能[J]. 金属学报, 2014, 50(11): 1377-1383.
[14] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
[15] 聂文金 尚成嘉 由洋 张晓兵 Sundaresa Subramanian. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J]. 金属学报, 2012, 48(7): 797-806.