Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 159-168    DOI: 10.11900/0412.1961.2014.00334
  本期目录 | 过刊浏览 |
铝合金熔焊微气孔的三维同步辐射X射线成像*
喻程1, 吴圣川1,3(), 胡雅楠1, 张卫华1, 付亚楠2
1 西南交通大学牵引动力国家重点实验室, 成都 610031
2 中国科学院上海应用物理研究所上海同步辐射光源, 上海 201204
3 European Synchrotron Radiation Facility (ESRF), Grenoble F-38043, France
THREE-DIMENSIONAL IMAGING OF GAS PORES IN FUSION WELDED Al ALLOYS BY SYNCHROTRON RADIATION X-RAY MICROTOMOGRAPHY
YU Cheng1, WU Shengchuan1,3(), HU Yanan1, ZHANG Weihua1, FU Yanan2
1 State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031
2 Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204
3 European Synchrotron Radiation Facility (ESRF), Grenoble F-38043, France
引用本文:

喻程, 吴圣川, 胡雅楠, 张卫华, 付亚楠. 铝合金熔焊微气孔的三维同步辐射X射线成像*[J]. 金属学报, 2015, 51(2): 159-168.
Cheng YU, Shengchuan WU, Yanan HU, Weihua ZHANG, Yanan FU. THREE-DIMENSIONAL IMAGING OF GAS PORES IN FUSION WELDED Al ALLOYS BY SYNCHROTRON RADIATION X-RAY MICROTOMOGRAPHY[J]. Acta Metall Sin, 2015, 51(2): 159-168.

全文: PDF(4056 KB)   HTML
摘要: 

基于同步辐射X射线成像技术, 对激光复合焊7020-T651铝合金接头内部的微气孔进行了研究, 对气孔的体积、圆整度、扁平度及气孔形心至自由表面的距离等三维特征参数进行了统计分析与拟合. 结果表明, 铝合金熔焊微气孔主要为近球形的冶金型气孔, 圆整度在0.65以上, 以焊缝中心近似呈现对称分布, 且焊缝上部气孔尺寸较大, 热影响区和下部气孔密集且尺寸较小. 等效直径在20 mm范围内的气孔, 在接头上部和下部的频率分别高达65%和85%, 并且100 mm以上的大尺寸气孔较少见. 此外, 由于熔池的下塌倾向和快速凝固, 残留于枝晶网络间液相导致焊缝下部形成垂直于焊缝且层叠分布的形状复杂的热裂纹, 少部分气孔之间以及气孔和热裂纹之间存在着连通现象, 从而使得下部微气孔的圆整度平均值变小. 此外, 焊接速率越大, 整个接头内部气孔体积分数越小, 但对气孔形貌和位置的分布影响并不明显。

关键词 激光复合焊铝合金气孔同步辐射X射线成像    
Abstract

Large numbers of complicatedly distributed gas pores are inevitably formed during the hybrid fusion welding of aluminum alloys because of the sharp reduction of supersaturated hydrogen. However, there is no consistent and explicit view on how these gas pores are distributed and influence the static and fatigue property of welded aluminum joints. In this work, pores in hybrid welded 7020-T651 were characterized by high-resolution synchrotron radiation X-ray computed microtomography. The volume, sphericity, flatness and distance of pores centroid to free surface of samples were statistically measured and fitted. From the 3D characterization, micropores inside hybrid welds are mainly metallurgical pores, which are symmetrically distributed about the seam centerline, giving a mean sphericity larger than 0.65. Moreover, pores inside upper welds appear to be larger in effective diameter and denser in heat affected zone and lower welds. Besides, there are numerous pores with diameter less than 20 μm, with a frequency of 65% and 85% in the upper and lower weld, respectively. It seems that hot cracks with complicated morphology form in the lower weld due to shrinkage and rapid solidification of the molten pool. Furthermore, it is found that the connections of a few pore-pore and pore-hot-crack together with the hot cracks result in the smaller sphericity of gas pores in the lower welds. Finally it can be indicated that the higher welding speed gives rise to the smaller pore volume fraction, but has little influence on the distribution of pore position and sphericity。

Key wordshybrid laser welding    aluminum alloy    gas pore    synchrotron radiation X-ray imaging
收稿日期: 2014-06-23     
ZTFLH:  TG115.28  
基金资助:* 国家自然科学基金项目51005068, 中央高校基本科研业务专项资金项目2682013CX030和高速铁路基础研究联合基金重点项目U1234208资助
作者简介: null

喻 程, 男, 1989年生, 硕士生

Sample Speed / (mmin-1) Sampled
No. location
T1 6 Top half
B1 6 Bottom half
T2 9 Top half
B2 9 Bottom half
表1  试样的焊接速率及取样部位
图1  微气孔断层扫描示意图
图2  气孔形貌及纵向切片面积分数分布
图3  焊缝下部的横向热裂纹
图4  焊缝气孔断口形貌及连通
Sample No. Number of pore Volume fraction
%
Max. eff. diameter
μm
Mean volume mm3 Mean sphericity Max. area fraction
%
B1 5422 0.46 81.76 1449.6 0.6383 3.03
B2 3007 0.25 86.58 1304.6 0.6455 1.01
T1 1318 0.32 118.89 6117.9 0.6758 2.35
T2 2391 0.22 111.69 4574.5 0.6619 1.76
表2  样品内气孔特征统计
图5  等效直径的直方图及其对数正态拟合曲线
图6  圆整度的直方图及其修正对数正态拟合曲线
图7  气孔至自由表面距离的直方图及其多项式拟合曲线
图8  气孔圆整度、等效直径及其至自由表面距离的关系
图9  接头中典型的气孔和热裂纹
图10  圆整度与扁平度的散点图
[1] Wu S C,Zhu Z T,Li X W. Laser Welding of Aluminium Alloys and the Performance Evaluation. Beijing: National Defense Industry Press, 2014: 234
[1] (吴圣川,朱宗涛,李向伟. 铝合金的激光焊接及性能评价. 北京: 国防工业出版社, 2014: 234)
[2] Gong S L, Yao W, Steve S. Trans Chin Weld Inst, 2009; 30(1): 60
[2] (巩水利, 姚 伟, Steve S. 焊接学报, 2009; 30(1): 60)
[3] Mathers G. The Welding of Aluminum and Its Alloys. Cambridge: Woodhead Publishing Limited, 2002: 18
[4] Wu S C, Yu X, Zuo R Z, Zhang W H, Xie H L, Jiang J Z. Weld J, 2013; 92: 64
[5] Li X Y, Gong S L, Zhang J X. J Mech Strength, 2008; 30: 965
[5] (李晓延, 巩水利, 张建勋. 机械强度, 2008; 30: 965)
[6] Rudy J F, Rupert E J. Weld J, 1970; 49: 322
[7] Shore R J, McCauley R B. Weld J, 1970; 49: 311
[8] Ma J M, Li J Y. Dev Appl Mater, 2003; 18(6): 31
[8] (马建民, 李敬勇. 材料开发与应用, 2003; 18(6): 31)
[9] Zhang M Y. Master Thesis, Southwest Jiaotong University, Chengdu, 2013
[9] (张明月. 西南交通大学硕士学位论文, 成都, 2013)
[10] Wang S G, Wang S C, Zhang L. Acta Metall Sin, 2013; 49: 897
[10] (王绍刚, 王苏程, 张 磊. 金属学报, 2013; 49: 897)
[11] Yonetani H. Weld Int, 2008; 22: 701
[12] Wang Y J. Welding Technique for Aluminum High-Speed Train Body. 2nd Ed., Beijing: China Machine Press, 2011: 43
[12] (王炎金. 铝合金车体焊接工艺. 第二版, 北京: 机械工业出版社, 2011: 43)
[13] Wang Y L,Chen H. Aluminum Welding Technology of High Speed Train Body. Chengdu: Southwest Jiaotong University Press, 2012: 81
[13] (王元良,陈 辉. 高速列车铝合金车体的焊接技术. 成都: 西南交通大学出版社, 2012: 81)
[14] Mizutani M, Yamaguchi Y, Katayama S. Weld Int, 2008; 22: 705
[15] Andrew R C, Waring J. Weld J, 1974; 53: 85
[16] Wan Q, Zhao H D, Zou C. Acta Metall Sin, 2013; 49: 284
[16] (万谦, 赵海东, 邹纯. 金属学报, 2013; 49: 284)
[17] Li Y J. Quality Control of Microstructures and Performance for Welded Joints. Beijing: Chemical Industry Press, 2005: 213
[17] (李亚江. 焊接组织性能与质量控制. 北京: 化学工业出版社, 2005: 213)
[18] Zhou W S,Yao J S. Welding Aluminum and Its Alloy. Beijing: China Machine Press, 2007: 48
[18] (周万盛,姚君山. 铝及铝合金的焊接. 北京: 机械工业出版社, 2007: 48)
[19] Zuo T C. Laser Processing of High Strength Aluminum Alloys. 2nd Ed., Beijing: National Defense Industry Press, 2008: 22
[19] (左铁钏. 高强铝合金的激光加工. 第二版, 北京: 国防工业出版社, 2008: 22)
[20] Huang J L, Warnken N, Gebelin J C, Strangwood M, Reed R C. Acta Mater, 2012; 60: 3215
[21] Wu S C, Yu C, Zhang W H, Fu Y N, Helfen L. Sci Technol Weld Join, 2015; 20: 11
[22] Toda H, Masuda S, Batres R, Kobayashi M, Aoyama S, Onodera M, Furusawa R, Uesugi K, Takeuchi A, Suzuki Y. Acta Mater, 2011; 59: 4990
[23] Ma L D. Modern X-ray Polycrystalline Diffraction: Experimental Technique and Data Analysis. Beijing: Chemical Industry Press, 2004: 318
[23] (马礼敦. 近代X射线多晶体衍射: 实验技术与数据分析. 北京: 化学工业出版社, 2004: 318)
[24] Zhang Q L, Ding L H, Shao S F, Liu W P, Wang X M, Sun D L, Yin S T. J Synth Cryst, 2009; 38: 330
[24] (张庆礼, 丁丽华, 邵淑芳, 刘文鹏, 王晓梅, 孙敦陆, 殷绍唐. 人工晶体学报, 2009; 38: 330)
[25] Derek H. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Lundon: Cambridge University Press, 1999: 153
[26] Wu S C, Zhang W H, Jiao H S, Fu Y N. Sci Sin Techologica, 2013; 43: 785
[26] (吴圣川, 张卫华, 焦汇胜, 付亚楠. 中国科学: 技术科学, 2013; 43: 785)
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[7] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[8] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[11] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[12] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[13] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[14] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[15] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.