Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 148-158    DOI: 10.11900/0412.1961.2014.00313
  本期目录 | 过刊浏览 |
球墨铸铁凝固显微组织的元胞自动机模拟*
张蕾, 赵红蕾, 朱鸣芳()
东南大学江苏省先进金属材料高技术研究重点实验室, 南京 211189
SIMULATION OF SOLIDIFICATION MICROSTRUC-TURE OF SPHEROIDAL GRAPHITE CAST IRON USING A CELLULAR AUTOMATON METHOD
ZHANG Lei, ZHAO Honglei, ZHU Mingfang()
Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189
引用本文:

张蕾, 赵红蕾, 朱鸣芳. 球墨铸铁凝固显微组织的元胞自动机模拟*[J]. 金属学报, 2015, 51(2): 148-158.
Lei ZHANG, Honglei ZHAO, Mingfang ZHU. SIMULATION OF SOLIDIFICATION MICROSTRUC-TURE OF SPHEROIDAL GRAPHITE CAST IRON USING A CELLULAR AUTOMATON METHOD[J]. Acta Metall Sin, 2015, 51(2): 148-158.

全文: PDF(2795 KB)   HTML
摘要: 

改进了前期工作建立的多相元胞自动机(multi-phase cellular automaton, MCA)模型, 模拟以离异共晶方式凝固的球墨铸铁的显微组织演化. 在模型中采用局部溶质平衡法计算石墨和奥氏体的生长动力学, 并在石墨的生长模型中考虑石墨与Fe的密度比. 该模型可以模拟出与实验观测相符合的显微组织形貌. 应用该模型模拟分析了石墨与奥氏体的相互作用和竞争生长机制, 讨论了冷却速率对凝固结束时石墨球大小和尺寸分布的影响, 将模拟结果与实验结果进行了比较. 结果表明: 奥氏体的析出促进邻近石墨在液相中的生长; 奥氏体和石墨两相的生长受C扩散控制; 当石墨被奥氏体包围后, 生长速度减慢. 此外, 随着冷却速率的增大, 凝固时间缩短, 石墨球平均半径减小, 不同冷速条件下石墨球尺寸分布的变化规律与实验结果吻合较好。

关键词 球墨铸铁凝固离异共晶元胞自动机显微组织模拟    
Abstract

Spheroidal graphite (SG) cast iron is characterized by the presence of spherical graphite nodules distributed in the metallic matrix. The performance of castings is primarily dependent on the solidification microstructures. In this work, a two dimensional (2D) multi-phase cellular automaton (MCA) model previously proposed by the present authors is improved to simulate the microstructure evolution of SG cast iron during divorced eutectic solidification. The present model adopts a local solutal equilibrium approach to calculate the driving force for the growth of both graphite and austenite phases. The density difference between iron and graphite is also taken into account. The diffusion of solute in the simulation domain is calculated using a finite difference method (FDM). The present model is applied to simulate the evolution of microstructure and carbon concentration field during solidification for hypereutectic SG cast irons. The results show that the present model can reasonably describe the typical features of divorced eutectic solidification, involving the independent nucleation and growth of primary graphite and austenite dendrites in liquid, the competitive growth of adjacent graphite nodules, engulfment of graphite nodules by austenite dendrites, the isotropic growth of the austenite shells that envelop the graphite nodules, the austenite to graphite eutectic phase transition controlled by carbon diffusion through the solid austenite shell, and multiple graphite nodules encapsulated in each austenite grain at the end of eutectic solidification. The simulated volume fraction and average diameter for graphite nodules are compared reasonably well with the experimental data and level rule calculation. The interactive and competitive growth behavior between austenite dendrites and graphite nodules is studied in detail. It is found that the growth of a graphite nodule is promoted by the approaching austenite. However, after embedded by an austenite dendrite, the growth velocity of graphite decreases rapidly because of lower carbon diffusivity in austenite than that in liquid. In addition, the effect of cooling rate on the size of graphite nodules is also investigated. The results show that with cooling rate increasing, the size distribution of graphite nodules varies from two peaks to one peak, and the average diameter of nodules decreases. The simulation results compare reasonably well with the experimental data reported in literature, demonstrating the validity of the present model。

Key wordsspheroidal graphite cast iron    solidification    divorced eutectic    cellular automaton    microstructure modeling
收稿日期: 2014-06-17     
ZTFLH:  TG161  
基金资助:*国家自然科学基金资助项目51371051
作者简介: null

张 蕾, 女, 1989年生, 硕士生

Parameter Value Unit
Partition coefficient kg? 0.49
Liquidus slope of graphite mL,Gr 470 K·%-1
Solidus slope of graphite ms,Gr 284.8 K·%-1
Liquidus slope of austenite mL,g? -90 K·%-1
Eutectic temperature Teut 1153.7+4.865×%Si
Eutectic composition Ceut 4.28 %
Gibbs-Thomson coefficient of graphite ГGr 1.9×10-7 m·K
Gibbs-Thomson coefficient of austenite Гg 3.7×10-7 m·K
Specific heat of liquid cp 880 J·kg-1·K-1
Volume latent heat of austenite LV,g 1.82×109 J·m-3
Volume latent heat of graphite LV,Gr 3.60×109 J·m-3
1.5×10-10 (T>(Teut-200) ℃)
Diffusion coefficient in austenite Dg 1.5×10-10exp(-142100/8.314T) m2·s-1
(T≤(Teut-200) ℃)
Diffusion coefficient in liquid DL 5.0×10-9 m2·s-1
Degree of the surface energy anisotropy dt 0.6
Degree of the kinetic anisotropy dk 0.6
Density of graphite rGr 2100 kg·m-3
Density of iron rFe 7930 kg·m-3
表1  本工作计算所采用的物性参数[19]
图1  不同温度下初始成分C0=4.71%时过共晶球墨铸铁的形貌演变
图2  固相、奥氏体和石墨体积分数随温度的变化
Method Graphite volume fraction / % Average radius / mm
Simulation result of program calculation 14.16 21.24
Simulation result of Imagetool measurement 14.10 21.19
Lever rule calculation 14.59 21.55
Experimental result of Imagetool measurement[22] 11.44 18.52
表2  模拟的石墨体积分数和平均半径与杠杆定律计算值以及实验值的比较
图3  模拟的C0=4.65% 过共晶球墨铸铁凝固过程中石墨与奥氏体相互作用与竞争生长
图4  在图3中I, II和III号石墨的生长速度和半径随凝固时间的变化
图5  模拟的 C0=4.31%的球墨铸铁在740 ℃时石墨尺寸分布随散热速率的变化
图6  模拟的 C0=4.31%的球墨铸铁在740 ℃时显微组织形貌随散热速率的变化
图7  模拟和实验[23]的C0=4.31% (Fe-3.57%C-2.64%Si)的球墨铸铁石墨平均半径与凝固时间的关系
[1] Lei F J. Hot Working Technol, 2008; 37(13): 125
[1] (雷富军. 热加工工艺, 2008; 37(13): 125)
[2] Zhou J Y. Color Metallography of Cast Irons. Beijing: China Machine Press, 2002: 98
[2] (周继扬. 铸铁彩色金相学. 北京: 机械工业出版社, 2002: 98)
[3] Shi Y F, Xu Q Y, Gong M, Liu B C. Acta Metall Sin, 2011; 47: 620
[3] (石玉峰, 许庆彦, 龚 铭, 柳百成. 金属学报, 2011; 47: 620)
[4] Wu M W, Xiong S M. Acta Metall Sin, 2010; 46: 1534
[4] (吴孟武, 熊守美. 金属学报, 2010; 46: 1534)
[5] Jiang H X, Zhao J Z. Acta Metall Sin, 2011; 47: 1099
[5] (江鸿翔, 赵九洲. 金属学报, 2011; 47: 1099)
[6] Zhang X F, Zhao J Z. Acta Metall Sin, 2012; 48: 615
[6] (张显飞, 赵九洲. 金属学报, 2012; 48: 615)
[7] Dai T, Zhu M F, Chen S L, Cao W S, Hong C P. Acta Metall Sin, 2008; 44: 1175
[7] (戴 挺, 朱鸣芳, 陈双林, 曹伟生, 洪俊杓. 金属学报, 2008; 44: 1175)
[8] Yang Z R, Sun D K, Pan S Y, Dai T, Zhu M F. Acta Metall Sin, 2009; 45: 43
[8] (杨朝蓉, 孙东科, 潘诗琰, 戴 挺, 朱鸣芳. 金属学报, 2009; 45: 43)
[9] Li Z Y, Zhu M F, Dai T. Acta Metall Sin, 2013; 49: 1032
[9] (李正扬, 朱鸣芳, 戴 挺. 金属学报, 2013; 49: 1032)
[10] Charbon C, Rappaz M. In: Lesoult G, Lacaze J eds., Physical Metallurgy of Cast Iron V. Switzerland: Scitec Publications, 1997: 453
[11] Ruxanda R, Beltran-Sanchez L, Massone J, Stefanescu D M. Trans AFS, 2001; 109: 1037
[12] Gurgul D, Burbelko A. Arch Metall Mater, 2010; 55: 53
[13] Burbelko A, Fras E, Gurgul D, Kapturkiewicz W, Sikora J. Key Eng Mater, 2011; 457: 330
[14] Burbelko A A, Gurgul D, Kapturkiewic W, Górny M. Mater Sci Eng, 2012; 33: 012083
[15] Zhao H L, Zhu M F, Stefanescu D M. Key Eng Mater, 2011; 457: 324
[16] Zhu M F, Pan S Y, Sun D K, Zhao H L. ISIJ Int, 2010; 50: 1851
[17] Zhu M F, Stefanescu D M. Acta Mater, 2007; 55: 1741
[18] Stefanescu D M. Science and Engineering of Casting Solidification. 2nd Ed., New York: Springer, 2009: 220
[19] Zhu M, Zhang L, Zhao H, Stefanescu D M. Acta Mater, 2015; 84: 413
[20] Brown S G R, Williams T, Spittle J A. Acta Metall Mater, 1994; 42: 2893
[21] Stefanescu D M, Katz S. In: Vishwanatan S ed., ASM Handbook. Vol.15, Materials Park, Ohio: ASM International, 2008: 41
[22] Zheng H L, Sun Y C, Zhang N, Tian X L. ISIJ Int, 2010; 50: 1981
[23] Pedersen K M, Tiedje N S. Mater Charact, 2008; 59: 1111
[24] Torres J F L. PhD Dissertation, University of Alabama, Tuscaloosa, America, 2003
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[4] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[5] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[8] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[11] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[12] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[13] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[14] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.