Please wait a minute...
金属学报  2014, Vol. 50 Issue (8): 962-970    DOI: 10.11900/0412.1961.2013.00766
  本期目录 | 过刊浏览 |
定向凝固过共晶合金Al-Al2Cu的组织演化及取向分析*
高卡, 李双明(), 傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURE EVOLUTION AND ORIENTATION ANALYSIS OF HYPEREUTECTIC Al-Al2Cu ALLOY UNDER DIRECTIONAL SOLIDIFICATION
GAO Ka, LI Shuangming(), FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi′an 710072
引用本文:

高卡, 李双明, 傅恒志. 定向凝固过共晶合金Al-Al2Cu的组织演化及取向分析*[J]. 金属学报, 2014, 50(8): 962-970.
Ka GAO, Shuangming LI, Hengzhi FU. MICROSTRUCTURE EVOLUTION AND ORIENTATION ANALYSIS OF HYPEREUTECTIC Al-Al2Cu ALLOY UNDER DIRECTIONAL SOLIDIFICATION[J]. Acta Metall Sin, 2014, 50(8): 962-970.

全文: PDF(6341 KB)   HTML
摘要: 

采用恒速及跃迁减速定向凝固方法制备了Al-40%Cu (质量分数)过共晶合金, 对金属间化合物初生Al2Cu相的组织及取向演化进行了研究. 结果表明, 当定向凝固速率恒定为10 μm/s, 抽拉100 mm时, 合金成分随着凝固距离的增大而减小, 初生Al2Cu相枝晶由规则棱面V型转变为非棱面形貌, 在抽拉距离80 mm附近消失, 其生长方向由[110]方向转变为(121)晶面的法线方向; 当定向凝固速率由10 μm/s跃迁减速至2 μm/s时, 合金成分在变速界面后随着凝固距离的增大先增大后减少, 初生Al2Cu相枝晶由规则棱面V型变为非棱面长条状形貌而后消失, 其体积分数先增大后减少, Al2Cu相的生长方向由[110]方向转变为平行于热流方向的[001]方向. 定向凝固恒速与跃迁变速下初生Al2Cu相枝晶生长机制存在异同, 凝固工艺参数成为影响枝晶最终组织形态和生长方向的主要因素.

关键词 定向凝固速率跃迁金属间化合物Al2Cu相取向    
Abstract

Dendrite is a fundamental growth pattern in alloy solidification. Normally, dendrites with a specific growth orientation which can remarkably influence casting properties have attracted many great interests. The previous investigations mainly focus on the growth of simple monophase dendrites solid solution. For complex intermetallics in solidification, the correlation between processing parameters and microstructure morphologies with the preferred growth directions has not been shed a light. In this work, considering intermetallic Al2Cu phase has crystalline anisotropy and can exhibit colorfully complicated growth morphologies with specific growth direction in different solidification conditions, the primary Al2Cu phase growth behavior of Al-40%Cu (mass fraction) hypereutectic alloy was investigated by using a high thermal gradient directional solidification apparatus. The Al2Cu phase growth behavior in the experiments included its change in growth morphology and orientation transition. With solidification distance increasing, due to the alloy liquid composition ahead of the solid/liquid interface approaching the eutectic point, the primary Al2Cu dendrite transited from regular faceted V-shaped morphology to the entirely coupled eutectic at 10 μm/s. Its growth direction changed from [110] direction to the normal direction of (121) plane. The EBSD result indicated that the [001] direction of Al2Cu phase was along the direction of heat flux. As the growth rate was changed abruptly from 10 to 2 μm/s, the alloy liquid composition ahead of the solid/liquid interface increased firstly and then decreased to the eutectic point. It caused that the primary Al2Cu dendrite transited from regular faceted V-shaped morphology to long smooth lath morphology, and finally disappeared to form the entirely coupled eutectic. Moreover, the growth direction of Al2Cu phase changed from [110] direction to [001] direction. The experimental results show that the directional solidification process parameter is the dominant factor affecting the final morphology and growth direction of dendrites.

Key wordsdirectional solidification    abrupt growth rate    intermetallic Al2Cu phase    orientation
收稿日期: 2013-11-25     
ZTFLH:  TG292  
基金资助:* 国家自然科学基金项目50971101和51074127及凝固技术国家重点实验室自主研究课题项目34-TP-2009资助
作者简介: null

高卡, 男, 1985年生, 博士生

图1  定向凝固速率为10 μm/s时Al-40%Cu合金的纵截面组织
图2  定向凝固速率为10 μm/s时Al-40%Cu合金中Cu成分随凝固分数的变化
图3  Al-40%Cu合金在定向凝固速率从10 μm/s跃迁减速到2 μm/s时的纵截面组织
图4  恒定定向凝固速率10 μm/s时Al-40%Cu合金的横截面组织和极图
图5  恒定定向凝固速率10 μm/s时Al-40%Cu合金在不同凝固距离处的示意图和反极图
图6  Al-40%Cu合金在定向凝固速率10 μm/s跃迁减速到2 μm/s下不同凝固距离处的示意图和反极图
图7  不同的生长条件下组织形貌形成的示意图
[1] Salgado-Ordorica M A, Phillion A B, Rappaz M. Metall Mater Trans, 2013; 44A: 2699
[2] Warren J. Nat Mater, 2006; 5: 595
[3] Haxhimali T, Karma A, Geonales F, Rappaz M. Nat Mater, 2006; 5: 660
[4] Yan X Q, Liu S X, Long W M, Huang J L, Zhang L Y, Chen Y. Mater Des, 2013; 45: 440
[5] Sharma C, Dwivedi D K, Kumar P. Mater Des, 2013; 43: 136
[6] Sass V, Glatzel U, Feller-Kniepmeier M. Acta Mater, 1996; 44: 1969
[7] Du Y Z, Zheng M Y, Xu C, Qiao X G, Wu K, Liu X D, Wang G J, Lv X Y. Mater Sci Eng, 2013; A576: 10
[8] Matsunawa A, Katayama S, Simidzu H. Trans Joining Weld Res Inst, 1990; 19: 71
[9] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Acta Mater, 2009; 57: 942
[10] Zhu W W, Ren Z M. Mater Sci Eng, 2006; A441: 185
[11] Yilmaz F, Elliott R. J Cryst Growth, 1984; 66: 466
[12] Quan Q R, Li S M, Fu H Z. Acta Metall Sin, 2010; 46: 500
[12] (全琼蕊, 李双明, 傅恒志. 金属学报, 2010; 46: 500)
[13] Gao K, Li S M, Fu H Z. Adv Mater Lett, 2011; 2: 369
[14] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L. Binary Alloy Phase Diagrams. 2nd Ed., Materials Park, Ohio: ASM International Publications, 1990: 141
[15] Zhao P, Li S M, Fu H Z. Acta Metall Sin, 2012; 48: 35
[15] (赵 朋, 李双明, 傅恒志. 金属学报, 2012; 48: 35)
[16] Ting L, Li S M, Fu H Z. Rare Met Mater Eng, 2007; 36: 617
[16] (唐 玲, 李双明, 傅恒志. 稀有金属材料与工程, 2007; 36 : 617 )
[17] Jackson K A, Hunt J D. Trans Metall Soc AIME, 1966; 236: 1129
[18] Li X, Ren Z, Fautrelle Y, Zhang Y D, Esling C. Acta Mater, 2010; 58: 1409
[19] Li X, Ren Z, Fautrelle Y. Acta Mater, 2006; 54: 5353
[20] Sun Z, Zhang L, Guo M, Vleugels J, Van der Biest O, Blanpain B. Europhys Lett, 2010; 89: 64002
[21] Kraft R W, Albright D L. Tran Metall Soc AIME, 1961; 221: 97
[22] Hamar R, Lemaignan C. J Cryst Growth, 1981; 53: 587.
[23] Fu H Z,Guo J J,Liu L,Li J S. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 594
[23] (傅恒志,郭景杰,刘 林,李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 594)
[24] Stefanescu D M. Science and Engineering of Casting Solidification. 2nd Ed., Berlin: Springer, 2009: 176
[25] Dai F P, Wei B B. Sci China, 2009; 39G: 1544
[25] (代富平, 魏炳波. 中国科学, 2009; 39G: 1544)
[26] Gao K, Li S M, Xu L, Fu H Z. Cryst Res Technol, 2014; 49: 167
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[6] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[7] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[8] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[9] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[11] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[12] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[13] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[14] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[15] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.