Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1286-1294    DOI: 10.3724/SP.J.1037.2013.00607
  综述 本期目录 | 过刊浏览 |
Ti2AlNb基合金微观组织调制及热成形研究进展
沈军1),冯艾寒1,2)
1) 同济大学材料科学与工程学院, 上海 200092
2) 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
RECENT ADVANCES ON MICROSTRUCTURAL CONTROLLING AND HOT FORMING OF Ti2AlNb-BASED ALLOYS
SHEN Jun1), FENG Aihan1,2)
1) School of Materials Science and Engineering, Tongji University, Shanghai 200092
2) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
引用本文:

沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294.
SHEN Jun, FENG Aihan. RECENT ADVANCES ON MICROSTRUCTURAL CONTROLLING AND HOT FORMING OF Ti2AlNb-BASED ALLOYS[J]. Acta Metall Sin, 2013, 49(11): 1286-1294.

全文: PDF(1682 KB)  
摘要: 

以有序O相为基的Ti2AlNb基金属间化合物(简称Ti2AlNb基合金),以其较高的强度和塑性, 优良的抗蠕变性能以及较低的密度,逐渐发展成为一种极具潜力的航空应用材料.本文总结了Ti2AlNb基合金微观组织与力学性能方面的最新研究进展,重点对晶体结构、相变、微观组织及热成形等方面进行评述.

关键词 Ti2AlNb基合金金属间化合物微观组织热成形超塑性    
Abstract

Intermetallic alloys based on an ordered orthorhombic phase Ti2AlNb,hereafter referred to as the Ti2AlNb-based alloys, are continually developing as attractive materials for aerospace applications due to their desirable properties like a unique combination of strength and ductility, good creep resistance, and low densities. This review article is thus aimed at summarizing recent advances on the microstructural evolution and mechanical properties of the Ti2AlNb-based alloys. Particular attention is paid to their crystal structure, phase transformations, microstructure and hot forming processing.

Key wordsTi2AlNb-based alloy    intermetallic    microstructure    hot forming, superplasticity
收稿日期: 2013-08-27     
作者简介: 沈军, 男, 1965年生, 教授

[1] Banerjee D, Gogia A K, Nandi T K, Joshi V A. Acta Metall, 1988; 36: 871

[2] Banerjee D. Prog Mater Sci, 1997; 42: 135
[3] Boehlert C J. Mater Sci Eng, 1999; A267: 82
[4] Boehlert C J, Miracle D B. Metall Mater Trans, 1999; 30A: 2349
[5] Boehlert C J. Metall Mater Trans, 2001; 32A: 1977
[6] Dey S R, Suwas S, Fundenberger J J, Ray R K. Intermetallics, 2009; 17: 622
[7] Zhang J W, Li S Q, Liang X B, Cheng Y J. Chin J Nonferrous Met, 2010; 20(spec 1): 336
(张建伟, 李世琼, 梁晓波, 程云君. 中国有色金属学报, 2010; 20(专辑1): 336)
[8] Chen Z. Master Thesis, Harbin Institute of Technology, 2013
(陈 卓. 哈尔滨工业大学硕士学位论文, 2013)
[9] Shagiev M R, Galeyev R M, Valiakhmetov O R, Safiullin R V. Adv Mater Res, 2009; 59: 105
[10] Peng J H, Mao Y, Li S Q, Sun X F. Mater Sci Eng, 2001; A299: 75
[11] Ma X, Zeng W D, Xu B, Sun Y, Xue C, Han Y F. Intermetallics, 2012; 20: 1
[12] Germann L, Banerjee D, Guedou J Y, Strudel J L. Intermetallics, 2005; 13: 920
[13] Tang F, Nakazawa S, Hagiwara M. Mater Sci Eng, 2002; A329-331: 492
[14] Feng A H, Li B B, Shen J. J Mater Metall, 2011; 10: 30
(冯艾寒, 李渤渤, 沈 军. 材料与冶金学报, 2011; 10: 30)
[15] Yang S J, Nam S W, Hagiwara M. Intermetallics, 2004; 12: 261
[16] Boehlert C J. Mater Sci Eng, 2000; A279: 118
[17] Zhu H L, Li Z Q, Shang B S, Mao W F, Wang C X, Li S Q, Zhang J W. J Mater Sci Technol, 2001; 17: 119
[18] Wu Y T, Yang C T, Koo C H. Mater Chem Phys, 2002; 73: 212
[19] Guo H P, Zeng Y S, Li Z Q. Aeronaut Manuf Technol, 2009; (10): 64
(郭和平, 曾元松, 李志强. 航空制造技术, 2009; (10): 64)
[20] Li Z Q, Guo H P. Aeronaut Manuf Technol, 2010; (8): 32
(李志强, 郭和平. 航空制造技术, 2010; (8): 32)
[21] Sergueeva A V, Stolyarov V V, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2002; A323: 318
[22] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[23] Sauvage X, Wilde G, Divinski S V, Horita Z, Valiev R Z. Mater Sci Eng, 2012; A540: 1
[24] Valiev R Z, Zehetbauer M J, Estrin Y, H$\ddot{\rm o$ppel H W, Ivanisenko Y, Hahn H,Wilde G, Roven H J, Sauvage X, Langdon T G. Adv Eng Mater, 2007; 9: 527
[25] Valiev R Z, Gertsman V Y, Kaibyshev O A. Phys Status Solidi, 1986; 97A: 11
[26] Salishchev G A, Galeyev R M, Malysheva S P, Myshlyaev M M. Nanostruct Mater, 1999; 11: 407
[27] Gleiter H. Prog Mater Sci, 1989; 33: 223
[28] Bendersky L A. Scr Metall Mater, 1993; 29: 1645
[29] Ren X, Hagiwara M. Acta Mater, 2001; 49: 3971
[30] Peng J H, Li S Q, Mao Y, Sun F. Mater Lett, 2002; 53: 57
[31] Sadi F A, Servant C. Mater Sci Eng, 2003; A346: 19
[32] Boehlert C J, Majumdar B S, Seetharaman V, Miracle D B. Metall Mater Trans, 1999; 30A: 2305
[33] Muraleedharan K, Gogia A K, Nandy T K, Banerjee D, Lele S. Metall Trans, 1992; 23A: 401
[34] Muraleedharan K, Nandy T K, Banerjee D, Lele S. Metall Trans, 1992; 23A: 417
[35] Li D Q, Boehlert C J. Metall Mater Trans, 2005; 36A: 2569
[36] Leyens C, Peters M. Titanium and Titanium Alloys--Fundamentals and Applications.Weinheim: Wiley-VCH GmbH {\& Co. KGaA, 2003: 1
[37] Ravi C, Vajeeston P, Mathijaya S, Asokamani R. Phys Rev, 1999; 60B: 15683
[38] Balasubramanian S, Anand L. Acta Mater, 2002; 50: 133
[39] Lin P, Feng A H, Yuan S J, Li G P, Shen J. Mater Sci Eng, 2013; A563: 16
[40] Froes F H, Suryanarayana C, Eliezer D. J Mater Sci, 1992; 27: 5113
[41] Banerjee D, Nandy T K, Gogia A K. Scr Metall, 1987; 21: 597
[42] Bendersky L A, Boettinger W J. Acta Metall Mater, 1994; 42: 2337
[43] Singh A K, Sarma B N, Lele S. Philos Mag, 2004; 84: 2865
[44] Muraleedharan K, Nandy T K, Banerjee D, Lele S. Intermetallics, 1995; 3: 187
[45] Sarosi P M, Hriljac J A, Jones I P. Philos Mag, 2003; 83: 4031
[46] Wu B. PhD Dissertation, General Research Institute for Non-ferrous Metals in Beijing, 2002
(吴 波. 北京有色金属研究总院博士学位论文, 2002)
[47] Wu Y, Zhen L, Yang D Z, Mao J F. Mater Lett, 1997; 32: 319
[48] Kazantseva N V, Demakov S L, Popov A A. Phys Met Metallograph, 2007; 103: 388
[49] Wen Y H, Wang Y, Bendersky L A, Chen L Q. Acta Mater, 2000; 48: 4125
[50] Bendersky L A, Boettinger W J, Roytburd A. Acta Metall Mater, 1991; 39: 1959
[51] Kazantseva N V, Demakov S L, Popov A A. Phys Met Metallograph, 2007; 103: 378
[52] Mozer B, Bendersky L A, Boettinger W J. Scr Metall Mater, 1990; 24: 2363
[53] Cui X Y, Yang J L, Li Q X, Xia S D, Wang C Y. J Phys: Condens Matter, 1999; 11: 6179

[54] Altan B S. Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials.New York: Nova Publishers, 2006: 1

[55] Lu B, Yang R. Rare Met Mater Eng, 2008; 37(suppl 3): 61

(卢斌, 杨锐. 稀有金属材料与工程, 2008; 37(增刊 3): 61)
[56] Quast J P, Boehlert C J. Metall Mater Trans, 2007; 38A: 529
[57] Lu B, Yang R, Cui Y Y. Acta Metall Sin, 2002; 38(suppl): 55
(卢 斌, 杨 锐, 崔玉友. 金属学报, 2002; 38(增刊): 55)
[58] Mao Y, Hagiwara M, Emura S. Scr Mater, 2007; 57: 261
[59] Yang S J, Nam S W, Hagiwara M. J Alloys Compd, 2003; 350: 280
[60] Peng J H, Li S Q, Mao Y, Sun X F. Chin J Nonferrous Met, 2000; 10(suppl 1): 50
(彭继华, 李世琼, 毛 勇, 孙训芳. 中国有色金属学报, 2000; 10(增刊 1): 50)
[61] Mao Y, Li S Q, Zhang J W, Peng J H, Zou D X, Zhong Z Y. Intermetallics, 2000; 8: 659
[62] Mao Y, Li S X, Zhang J W, Peng J H, Zou D X, Zhong Z Y. Acta Metall Sin, 2000; 36: 135
(毛 勇, 李世琼, 张建伟, 彭继华, 邹敦叙, 仲增墉. 金属学报, 2000; 36: 135)
[63] Chen Y Y, Si Y F, Kong F T, Chen Z Y. Rare Met Mater Eng, 2006; 35: 655
(陈玉勇, 司玉峰, 孔凡涛, 陈子勇. 稀有金属材料与工程, 2006; 35: 655)
[64] Ke Y B, Duan H P, Sun Y R. Mater Sci Eng, 2010; A528: 220
[65] Tang F, Nakazawa S, Hagiwara M. Mater Sci Eng, 2001; A315: 147
[66] Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, Zhu Y T.JOM, 2006; 58: 33
[67] Semenova I P, Polyakov A V, Raab G I, Lowe T C, Valiev R Z. J Mater Sci, 2012; 47: 7777
[68] Ko Y G, Jung W S, Shin D H, Lee C S. Scr Mater, 2003; 48: 197
[69] Ko Y G, Kim W G, Lee C S, Shin D H. Mater Sci Eng, 2005; A410-411: 156
[70] Ko Y G, Lee C S, Shin D H, Semiatin S L. Metall Mater Trans, 2006; 37A: 381
[71] Gallego J, Pinheiro T S, Valiev R Z, Polyakova V, Bolfarini C, Kiminami C S,Jorge A M, Botta W J. Mater Res-Ibero-Am J Mater, 2012; 15: 786
[72] Sergueeva A V, Stolyarov V V, Valiev R Z, Mukherjee A K. Scr Mater, 2000; 43: 819
[73] Mishra R S, Stolyarov V V, Echer C, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2001; A298: 44
[74] Noda M, Hirohashi M, Funami K. Mater Trans, 2003; 44: 2288
[75] Salishchev G A, Galeyev R M, Valiakhmetov O R, Safiullin R V, Lutfullin R Y,Senkov O N, Froes F H, Kaibyshev O A. J Mater Process Technol, 2001; 116: 265
[76] Patankar S N, Escobedo J P, Field D P, Salishchev G, Galeyev R M,Valiakhmetov O R, Froes F H S. J Alloys Compd, 2002; 345: 221
[77] Tsuji N, Saito Y, Utsunomiya H, Tanigawa S. Scr Mater, 1999; 40: 795
[78] Li B B. Master Thesis, Harbin Institute of Technology, 2011
(李渤渤. 哈尔滨工业大学硕士学位论文, 2011)
[79] Xu B. Master Thesis, Northwestern Polytechnical University, Xi'an, 2007
(徐 斌. 西北工业大学硕士学位论文, 西安, 2007)
[80] Feng A H, Shen J. Scr Mater, submitted
[81] Margolin H, Cohen P. Titanium'80: Science and Technology. Warrendale: TMS, 1980: 1155
[82] Prasad Y V R K, Seshacharyulu T. Mater Sci Eng, 1998; A243: 82
[83] Sagar P K, Banerjee D, Muraleedaran K, Prasad Y V R K. Metall Mater Trans, 1996; 27A: 2593
[84] Zhang Y, Liu J Y, Zhang J W. Chin J Nonferrous Met, 2008; 18: 30
(张艺, 刘俊友, 张建伟. 中国有色金属学报, 2008; 18: 30)
[85] Salishchev G A, Valiakhmetov O R, Galeyev R M. J Mater Sci, 1993; 28: 2898
[86] Imayev R M, Salishchev G A, Senkov O N, Imayev V M, Shagiev M R,Gabdullin N K, Kuznetsov A V, Froes F H. Mater Sci Eng, 2001; A300: 263
[87] Zherebtsov S V, Salishchev G A, Galeyev R M, Valiakhmetov O R, Mironov S Y,Semiatin S L. Scr Mater, 2004; 51: 1147
[88] Valiakhmetov O R, Galeyev R M, Ivan'ko V A, Imayev R M, Inozemtsev A A,Koksharov N L, Kruglov A A, Lutfullin R Y, Mulyukov R R, Nazarov A A,Safiullin R V, Kharin S A. Nanotechnol Russ, 2010; 5: 108
[89] Imayev V M, Salishchev G A, Shagiev M R, Kuznetsov A V, Imayev R M.Scr Mater, 1999; 40: 183
[90] Semiatin S L, Smith P R. Mater Sci Eng, 1995; A202: 26
[91] Wu Y T, Yang C T, Koo C H, Singh A K. Mater Chem Phys, 2003; 80: 339
[92] Emura S, Tsuzaki K, Tsuchiya K. Mater Sci Eng, 2010; A528: 355
[93] Shen J, Huang Y J, Feng A H, Li B B. Chin Pat, ZL201110135507.4, 2011
(沈军, 黄永江, 冯艾寒, 李渤渤. 中国专利, ZL20111013- 5507.4, 2011)
[94] Xie H. Bachelor Thesis, Harbin Institute of Technology, 2012
(解 辉. 哈尔滨工业大学学士学位论文, 2012)
[95] Kim J H, Park C G, Ha T K, Chang Y W. Mater Sci Eng, 1999; A269: 197
[96] Rosenberg Y, Mukherjee A K. Mater Sci Eng, 1995; A192-193: 788
[97] Jobart D, Blandin J J. Mater Sci Eng, 1996; A207: 170
[98] Fu H C, Huang J C, Wang T D, Bampton C C. Acta Mater, 1998; 46: 465
[99] Yang K L, Huang J C, Wang Y N. Acta Mater, 2003; 51: 2577
[100] Wang X, Lu B, Wang J H, Wang J, Wang H W, Chen Y H. Chin J Nonferrous Met, 2010; 20(S1): s289
(王新, 卢 斌, 王娟华, 王 俭, 王红武, 陈永辉. 中国有色金属学报, 2010; 20(专辑1): s289)
[101] Yang R, Hao Y L, Obbard E C, Dong L M, Lu B. Acta Metall Sin, 2010; 46: 1443
(杨 锐, 郝玉琳, Obbard E C, 董利民, 卢 斌. 金属学报, 2010; 46: 1443)
[102] Li S Y. Master Thesis, Harbin Institute of Technology, 2013
(李少雨. 哈尔滨工业大学硕士学位论文, 2013)
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[14] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.