Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 775-782    DOI: 10.3724/SP.J.1037.2012.00769
  论文 本期目录 | 过刊浏览 |
加载方式对奥氏体不锈钢力学性能和马氏体相变的影响
徐勇1),张士宏1),程明1),宋鸿武1),王苏程2)
1) 中国科学院金属研究所, 沈阳110016
2)中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016
EFFECT OF LOADING MODES ON  MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE  TRANSFORMATION OF AUSTENITIC STAINLESS STEELS
XU Yong1, ZHANG Shihong1, CHENG Ming1, SONG Hongwu1,WANG Sucheng2
1)Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2)Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

徐勇,张士宏,程明,宋鸿武,王苏程. 加载方式对奥氏体不锈钢力学性能和马氏体相变的影响[J]. 金属学报, 2013, 49(7): 775-782.
XU Yong, ZHANG Shihong, CHENG Ming, SONG Hongwu, WANG Sucheng. EFFECT OF LOADING MODES ON  MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE  TRANSFORMATION OF AUSTENITIC STAINLESS STEELS[J]. Acta Metall Sin, 2013, 49(7): 775-782.

全文: PDF(1746 KB)  
摘要: 

研究了不同温度范围单向拉伸加载方式对奥氏体不锈钢力学性能和组织演变的影响.结果表明, 循环加卸载拉伸方式显著影响304不锈钢的力学性能:在高温拉伸变形时, 不同加载方式所得到的力学性能相同; 在0℃以下,循环加卸载方式导致试样的延伸率降低; 而在室温条件下,循环加卸载拉伸能够最大程度地提高试样的强度和延伸率.通过对304不锈钢室温拉伸过程的原位观测证实,卸载过程导致能够有效激发形变诱发马氏体相变的形核和长大,从而使相变增塑效应增强, 延迟缩颈及断裂的能力得以提高.

关键词 奥氏体不锈钢加载方式循环加卸载拉伸形变诱发马氏体相变增塑效应    
Abstract

Driven by a good combination of strength and ductility, austenitic stainless steels have attracted much interest in the past decade. These metastable alloys fall into the category of transformation induced plasticity (TRIP) steels in which high strength and excellent ductility can be achieved due to their strain--induced martensitic transformation at ambient temperature. However, there are few reports on the detail of promoting this phase transformation and enhancing the TRIP effect during deformation only by changing the loading mode. In present work, the effect of loading modes on mechanical property and microstructure of austenitic stainless steels was investigated under various temperatures. The tensile tests results reveal that cyclic tensile loading and unloading (CTLU) mode can strongly influence the deformation behavior of AISI 304 steel. There is no difference at high temperature tension by different loading modes. Compared with the conventional monotonic tensile loading (MTL) mode, the elongation has been slightly reduced by CTLU mode at cryogenic temperature. However, CTLU mode can improve both strength and ductility of AISI 304 steel at room temperature. An in situ Xray diffraction has been carried out to identify and evaluate strain-induced martensitic transformation by different loading modes at room temperature. Experimental results showed that the fraction of strain-induced martensite increases when unloading happens. It indicated that CTLU mode can enhance strain hardening in AISI 304 stainless steel, which prolongs the time to neck formation to a significant extent. Consequently the TRIP effect is enhanced.

Key wordsaustenitic stainless steel    loading mode    cyclic tensile loading and unloading    strain-induced martensite    transformation induced plasticity effect
收稿日期: 2012-12-24     
作者简介: 徐勇, 男, 1983生, 博士

[1]Hecker S S, Stout M G, Staudhammer K P, Smith J L.Metall Trans, 1982; 13A: 619
[2]Rocha M R, Oliveira C A.  Mater Sci Eng, 2009; A517:281
[3]Bayerlein M, Christ H J, Mughrabi H.Mater Sci Eng,1989; A114: L11
[4]Nagy E, Mertinger V, Tranta F, Solyom J.Mater Sci Eng, 2004; A378: 308
[5]Yang Z Y, Su J, Chen J Y, Xiong J X.  Iron Steel,2007; 42(5): 61
(杨卓越, 苏杰, 陈嘉砚, 熊建新. 钢铁, 2007; 42(5): 61)
[6]Lebedev A A, Kosarchuk V V.  Int J Plast, 2000; 16:749
[7]Park W S, Yoo S W, Kim M H, Lee J M.  Mater Des,2010; 31: 3630
[8]Xu Y, Zhang S H, Song H W, Cheng M, Zhang H Q.Mater Lett, 2011; 65: 1545
[9]Xu Y, Zhang S H, Cheng M, Song H W.  Scr Mater,2012; 67: 771
[10]Cullen G W, Korkolis Y P.  Int J Solids Struct,2013; 50: 1621
[11]Cullen G W, Korkolis Y P.  AIP Conf Proc, 2013;1532: 725
[12]Hong S G, Lee S B.  Int J Fatigue, 2004; 26: 899
[13]Lee S H, Lee J C, Choi J Y, Nam W J.Met Mater Int, 2010; 16: 21
[14]Huang G L, Matlock D K, Krauss G.  Metall Trans,1989; 20A: 1239
[15]Breedis J F.  Acta Metall, 1965; 13: 239
[16]Spencer K, Veron M, Zhang K Y, Embury J D.Mater Sci Technol, 2009; 25: 7
[17]Zhang X H, Qiu X G, Lu G Q, Tang J.  Iron Steel Vanadium Titanium, 2001; 22(1): 63
(张晓华, 邱晓刚, 卢国清, 唐静. 钢铁钒钛, 2001; 22(1): 63)
[18]Song Y Q, Guan Z P, Li Z G, Wang M H.  Sci China SerE-Technol Sci, 2007; 37: 1363
(宋玉泉, 管志平, 李志刚, 王明辉. 中国科学E辑: 技术科学, 2007;37: 1363)
[19]Hedworth J, Stowell M J.  J Mater Sci, 1971; 6:1061
[20]Gibbs G B.  Philos Mag Lett, 1966; 13: 317
[21]Song Y Q, Lian S J, Zhang Z J.  Chin J Mech Eng,1989; 25(3): 38
(宋玉泉, 连书君, 张振军. 机械工程学报, 1989; 25(3): 38)
[22]Wang G C, Cao C X, Dong H B, Li Z X, Yang G, Zhao X B. Acta Aeronaut Astronaut Sin, 2009; 30: 357
(王高潮, 曹春晓, 董洪波, 李臻熙, 杨刚, 赵晓宾. 航空学报,2009; 30: 357)
[23]Zhang W F, Chen Y M, Zhu J H.  Chin J Nonferrous Met, 2000; 10: 236
(张旺峰, 陈瑜眉, 朱金华. 中国有色金属学报, 2000; 10: 236)
[24]Yu H Y.  Mater Sci Eng, 2008; A79: 333
[25]Zhou X F, Fu R Y, Su Y, Li L.  Iron Steel, 2009;44(3): 71
(周小芬, 符仁钰, 苏钰, 李麟. 钢铁, 2009; 44(3): 71)
[26]Fang X F, Dahl W.
 Mater Sci Eng, 1991; A141: 189

[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[4] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[6] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[7] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[8] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[11] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[12] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[13] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.