Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 221-228    DOI: 10.3724/SP.J.1037.2012.00318
  论文 本期目录 | 过刊浏览 |
机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征
王传琦, 刘洪喜, 周荣, 蒋业华, 张晓伟
昆明理工大学材料科学与工程学院, 昆明 650093
CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi-TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION
WANG Chuanqi, LIU Hongxi, ZHOU Rong, JIANG Yehua, ZHANG Xiaowei
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
全文: PDF(4460 KB)  
摘要: 

采用XRD, SEM和EDS分析了机械振动辅助激光熔覆NiCrBSi-TiC颗粒增强复合涂层中外加TiC颗粒和内生M23C6碳化物的生长形态、形成机制及其在γ-Ni固溶体间的分布特征. 结果表明, 熔池内大部分外加TiC颗粒在熔覆过程中溶解,溶解于镍基合金熔体中的过饱和Ti和C原子在冷却过程中又形成TiC颗粒, 并以共晶方式析出, 其通过M23C6型碳化物为核心异质形核, 并侧向生长; 同时, 出现以TiC为心部, 以(Ti, Cr, Ni, Fe, Si)C为外围包覆结构的复式碳化物.在振动作用下, 底部粗大枝晶状共晶组织消失, 振动引起的流体平流层使底部TiC颗粒上浮趋势减缓, 出现双颗粒和花瓣状多颗粒TiC粒子簇. 振动作用使熔覆层区域内的组织得到细化, 枝晶间网状(Fe, Ni)固溶体中Cr含量升高, TiC颗粒析出增多, 颗粒尺寸增加, 平均粒径增加超过25%. 从XRD谱可观察到, 振动作用使涂层内主要硬质相的衍射峰增强, 半高宽变宽, 表明硬质相的晶格完整性提高, 晶粒细化. 振动作用促使颗粒相均匀弥散分布于基体枝晶内和枝晶间.

关键词 激光熔覆机械振动NiCrBSi-TiC复合涂层显微组织生长机制    
Abstract

The good high temperature wear resistance and corrosion behavior of particle reinforced Ni-based alloy composite coating have attracted extensive attention in material science and engineering. It is necessary to analyze the morphologic characteristics and distribution of particles in composite coating. TiC particle reinforced NiCrBSi composite coating on medium carbon steel surface was fabricated by mechanical vibration assisted laser cladding technique. According to the distribution characteristics of hard phase particles in laser cladding molten pool, the growth morphology of TiC particle and endogenous M23C6 carbide, formation mechanism and its distribution characteristics in γ-Ni solid solution were analyzed by XRD, SEM and EDS. The results showed that most of TiC particles dissolved into the melted Ni-based alloy, but some supersaturated Ti and C atoms were precipitated in the form of TiC particles eutectic during cooling process. The TiC particles lateral growth with heterogeneous nucleation way depended on M23C6 type carbide substrate. At the same time, some composite carbide core-shell structure with (Ti, Cr, Ni, Fe, Si)C encapsulated TiC were generated in the coating. Under the effect of vibrant force, the bulky branch crystal eutectic structure disappeared in the bottom of laser cladding coating, the TiC particle floatation trend slowed down with the fluid stratosphere which caused by vibratory force and high-pressure gas, and some double and petal shape TiC particle clusters were also formed. The precipitated TiC particle increases with the Cr content in the inter-dendrite reticular (Fe, Ni) solid solution, and the average particle size was increased by more than 25%. The XRD results indicated that the diffraction peak intensity and lattice integrity of the main hard phases were enhanced, the half peak width was broadened and the crystalline grain size become smaller. The mechanical vibration promoted the dispersion of particles in the matrix dendrites and inter-dendrite.

Key wordslaser cladding    mechanical vibration    NiCrBSi-TiC composite coating    microstructure    growth mechanism
收稿日期: 2012-05-30     
基金资助:

国家自然科学基金资助项目 51165015

通讯作者: 刘洪喜     E-mail: vipliuhx@yahoo.com.cn
作者简介: 王传琦, 男, 1984年生, 博士生

引用本文:

王传琦, 刘洪喜, 周荣, 蒋业华, 张晓伟. 机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征[J]. 金属学报, 2013, 49(2): 221-228.
WANG Chuanqi, LIU Hongxi, ZHOU Rong, JIANG Yehua, ZHANG Xiaowei. CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi-TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION. Acta Metall Sin, 2013, 49(2): 221-228.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00318      或      https://www.ams.org.cn/CN/Y2013/V49/I2/221

[1] Sun R L, Mao J F, Yang D Z. Surf Coat Technol, 2002; 155: 203


[2] Lei Y W, Sun R L, Tang Y, Niu W. Opt Laser Technol, 2012; 44: 1141

[3] Fernandez E, Cadenas M, Gonzalez R, Navas C, Fernandez R,Damborenea J D. Wear, 2005; 259: 870

[4] Ma H B, Zhang W P. Rare Met Mater Eng, 2010; 39: 2189

(马海波, 张维平. 稀有金属材料与工程, 2010; 39: 2189)

[5] Wu C F, Ma M X, Wu A P, Liu W J, Zhong M L, Zhang W M, Zhang H J. Acta Metall Sin, 2009; 45: 1091

(吴朝锋, 马明星, 吴爱平, 刘文今, 钟敏霖, 张伟明, 张红军. 金属学报, 2009; 45: 1091)

[6] Lu X W, Lin X, Cao Y Q, Hu J, Gao B, Huang W D. Rare Met Mater Eng, 2011; 40: 714

(吕晓卫, 林鑫, 曹永青, 胡江, 高勃, 黄卫东. 稀有金属材料与工程, 2011; 40: 714)

[7] Yang S, Zhong M L, Liu W J. J Aero Mater, 2002; 22(1): 26

(杨森, 钟敏霖, 刘文今. 航空材料学报, 2002; 22(1): 26)

[8] Yang S, Liu W J, Zhong M L, Wang Z J. Mater Lett, 2004; 58: 2958

[9] Wang X H, Zhang M, Zou Z D, Qu S Y. Chin J Mech Eng, 2003; 39: 37

(王新洪, 张敏, 邹增大, 曲仕尧. 机械工程学报, 2003; 39: 37)

[10] Cui C Y, Guo Z X, Wang H Y, Hu J D. J Mater Process Technol, 2007; 183: 380

[11] Sun R L, Guo L X, Dong S L, Yang D Z. Chin J Lasers, 2001; 28: 275

(孙荣禄, 郭立新, 董尚利, 杨德庄. 中国激光, 2001; 28: 275)

[12] Sun R L, Yang D Z, Guo L X, Dong S L. Surf Coat Technol, 2001; 135: 307

[13] Wang C Q, Liu H X, Zhou R, Zhang X W, Zeng W H, Jiang Y H. Trans Mater Heat Treat, 2011; 32(7): 145

(王传琦, 刘洪喜, 周荣, 张晓伟, 曾维华, 蒋业华. 材料热处理学报, 2011; 32(7): 145)

[14] Zhang H, Shi Y, Kutsuna M, Xu G J. Nucl Eng Des, 2010; 240: 2691

[15] Guo C, Zhou J S, Chen J M, Zhao J R, Yu Y J, Zhou H D. Wear, 2011; 270: 492

[16] Wu X L, Chen G N. Acta Metall Sin, 1998; 34: 1284

(武晓雷, 陈光南. 金属学报, 1998; 34: 1284)

[17] Wang Z K, Zheng Q G, Tao Z Y, Ye H Q, Chen Q M. Acta Metall Sin, 1999; 35: 1027

(王忠柯, 郑启光, 陶曾毅, 叶和清, 陈清明. 金属学报, 1999; 35: 1027)

[18] Hu C, Barnard L, Mridha S, Baker T N. J Mater Process Technol, 1996; 58: 87

[19] Sun R L, Lu W X, Yang X J. J Chin Ceram Soc, 2005; 33: 1448

(孙荣禄, 吕伟鑫, 杨贤金. 硅酸盐学报, 2005; 33: 1448)

[20] Pei Y T. Acta Metall Sin, 1998; 34: 987

(裴宇韬. 金属学报, 1998; 34: 987)

[21] Kurz W, Fisher D J, translated by Li J G, Hu Q D.

 Fundamentals of Solidification. Beijing: Higher Education Press, 2010: 28

(Kurz W, Fisher D J 著, 李建国, 胡侨丹译. 凝固原理. 北京: 高等教育出版社, 2010: 28)

[22] Wang H M, Zhang J H, Tang Y J, Hu Z Q, Yukawa N, Morinaga M, Murata Y. Mater Sci Eng, 1992; A156: 109

[23] Chen Y, Wang H M. Rare Met Mater Eng, 2003; 32: 569

(陈瑶, 王华明. 稀有金属材料与工程, 2003; 32: 569)

[24] Fernandez R, Lecomte J C, Kattamis T Z. Metall Mater Trans, 1978; 9A: 1381

[25] Jackson K A. Mater Sci Eng, 1984; 65: 7

[26] Zhang S, Zhang C H, Kang Y P, Wu W T, Wang M C, Wen X Z. Chin J Nonferrous Met, 2001; 11: 1026

(张松, 张春华, 康煜平, 吴维?, 王茂才,文効忠. 中国有色金属学报, 2001; 11: 1026)

[27] Li Y X, Bai P K, Wang Y M, Hu J D, Guo Z X. Mater Des, 2009; 30: 140

 
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[8] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[9] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[10] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[13] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[14] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[15] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.