Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 469-474    DOI: 10.3724/SP.J.1037.2011.00714
  论文 本期目录 | 过刊浏览 |
C含量对ZrCN薄膜结构和力学性能的影响
喻利花, 马冰洋, 许俊华
江苏科技大学材料科学与工程学院, 镇江 212003
INFLUENCE OF C CONTENT ON STRUCTURE AND MECHANICAL PROPERTIES OF ZrCN COMPOSITE FILMS
YU Lihua, MA Bingyang, XU Junhua
School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
引用本文:

喻利花, 马冰洋, 许俊华. C含量对ZrCN薄膜结构和力学性能的影响[J]. 金属学报, 2012, 48(4): 469-474.
, , . INFLUENCE OF C CONTENT ON STRUCTURE AND MECHANICAL PROPERTIES OF ZrCN COMPOSITE FILMS[J]. Acta Metall Sin, 2012, 48(4): 469-474.

全文: PDF(800 KB)  
摘要: 通过非平衡磁控溅射的方法制备了不同C含量的ZrCN复合薄膜, 采用XPS, XRD, SEM, AFM, 纳米压痕仪和摩擦磨损仪等对薄膜的化学成分、微结构、表面形貌、力学性能及摩擦磨损性能进行了研究. 结果表明, ZrCN薄膜中(C+N)/Zr原子比对薄膜的相组成、微结构和力学性能都有很大的影响. 当(C+N)/Zr原子比小于1时, C进入ZrN的晶格间隙并形成Zr(C, N)固溶体. 而当(C+N)/Zr原子比大于1时, 多余的C形成非晶态的CN或单质C, ZrCN复合膜呈fcc结构. 随着C含量升高, ZrCN复合膜的硬度先增大后减小, 而摩擦系数逐渐减小, 磨损所产生的磨痕逐渐变窄、变浅. C的加入使得ZrCN复合膜的摩擦磨损形式发生改变, 摩擦磨损性能得到提高. 含C量为13.2%的ZrCN薄膜硬度达到31 GPa, 摩擦系数仅为0.26, 综合具备了硬度高、摩擦磨损性能好的优良特点.
关键词 ZrCN薄膜微结构力学性能摩擦磨损    
Abstract:ZrCN thin films with different C contents were deposited by reactive unbalanced magnetron sputtering. Their chemical composition, microstructure, surface morphology, mechanical and tribological properties were investigated by XPS, XRD, SEM, AFM, nanoindentation and tribometer. The results indicated that the atomic ratios of (C+N)/Zr played an important role in phase configuration, microstructure, mechanical and tribological properties. When the ratio was less than 1, a Zr(C, N) solid solution was formed due to the dissolution of C into the ZrN lattice. When the ratio was larger than 1, the amorphous phase CN and C appeared and the ZrCN thin films had a fcc crystal structure. As the C contents increased, the diffraction peak decreased and widen, and the hardness of ZrCN thin films increased first and then decreased. As the C contents increased, the coefficient of friction of ZrCN thin films decreased and the wear scar became more shallower and narrower. The incorporation of C changed the wear mode and improved the friction and wear behaviors. The hardness of ZrCN film reached 31 GPa and friction coefficient was 0.26 when C content was 13.2%.
Key wordsZrCN thin film    nanostructure    mechanical behavior    friction and wear
收稿日期: 2011-11-15     
基金资助:

国家自然科学基金项目51074080和江苏省自然科学基金项目BK2008240资助

作者简介: 喻利花, 女, 1964年生, 教授
[1] Kelesoglu E, Mitterer C, Kazmanli M K, Urgen M.  Surf Coat Technol, 1999; 116: 133

[2] Wu D, Zhang Z, Fu W, Fan X, Guo H.  Appl Phys,1997; 64A: 593

[3] Sue J A, Chang T P.  Surf Coat Technol, 1995; 76: 61

[4] Sakamoto I, Maruno S, Jin P.  Thin Solid Films,1993; 228: 169

[5] Deng J X, Liu J H, Ding Z L, Niu M.  Mater Des, 2008; 29: 1828

[6] Deng J X, Liu J H, Zhao J L, Song W L, Niu M.  Wear,2008; 264: 298

[7] Nong S B, Yu L H, Xu J H.  Surf Technol, 2008; 37: 5

    (农尚斌, 喻利花, 许俊华. 表面技术, 2008; 37: 5)

[8] Yu L H, Xue A J, Dong S T, Xu J H.  Trans Mater Heat Treat,2010; 31: 140

    (喻利花, 薛安俊, 董松涛, 许俊华. 材料热处理学报, 2010; 31: 140)

[9] Lu Y H, Shen Y G, Zhou Z F, Li K Y.  J Vac Sci Technol,2007; 25: 1539

[10] Chen R, Tu J P, Liu D G, Mai Y J, Gu C D.  Surf Coat Technol,2011; 205: 5228

[11] Kudapa S, Narasimhan K, Boppana P, Russell W C.  Surf Coat Technol, 1999; 120: 259

[12] Khan I A, Jabbar S, Hussain T, Hassan M, Ahmad R, Zakaullah M,Rawat R S.  Nucl Instrum Meth, 2010; 268B: 2228

[13] Larijani M M, Zanjanbar M B, Majdabadi A.  J Alloys Compd,2010; 492: 735

[14] Grigore E, Ruset C, Li X, Dong H.  Surf Coat Technol,2010; 204: 2006

[15] Gu J D, Chen P L.  Surf Coat Technol, 2006; 200: 3341

[16] Rie K T, Gebauer A, Wohle J.  Surf Coat Technol, 1996; 86--87: 498

[17] Rie K T, Wohle J.  Surf Coat Technol, 1999; 112: 226

[18] Hollstein F, Kitta D, Louda P, Pacal F, Meinhardt J. Surf Coat Technol, 2001; 142: 1063

[19] Oliver W C, Pharr G M.  J Mater Res, 1992; 7: 1564

[20] Boyer H E.  ASM Int, 1987; 1987: 188

[21] Cammarata R, Schlesinger T, Kim C, Qadri S, Edelstein A. Appl Phys Lett, 1990; 56: 1862

[22] Hultman L.  Vacuum, 2000; 57: 1

[23] Silva E, De Figueiredo M R, Franz R, Galindo R E, Palacio C, Espinosa A, Calderon S, Mitterer C, Carvalho S.  Surf Coat Technol,2010; 205: 2134

[24] Klug H, Alexander L.  Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley, 1974: 1

[25] Jhi S H, Ihm J, Louie S G, Cohen M L.  Nature, 1999; 399: 132

[26] Ziegele H, Rebholz C, Voevodin A, Leyland A, Rohde S, Matthews A. Tribology Int, 1997; 30: 845

[27] Li M Z.  Master Dessertation, Xi'an University of Technology, 2010

     (李铭志. 西安理工大学硕士论文, 2010)

[28] Takadoum J, Bennani H H.  Surf Coat Technol, 1997; 96: 272
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.