Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 932-938    DOI: 10.3724/SP.J.1037.2011.00163
  论文 本期目录 | 过刊浏览 |
核级不锈钢和铁素体-马氏体耐热钢在400℃/25 MPa超临界水中的腐蚀行为
钟祥玉, 吴欣强, 韩恩厚
1) 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
2) 中国科学院金属研究所辽宁省核电材料安全与评价技术重点实验室, 沈阳 110016
CORROSION BEHAVIORS OF NUCLEAR-GRADE STAINLESS STEEL AND FERRITIC-MARTENSITIC STEEL IN SUPERCRITICAL WATER
ZHONG Xiangyu, WU Xinqiang, HAN En-Hou
1) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

钟祥玉 吴欣强 韩恩厚. 核级不锈钢和铁素体-马氏体耐热钢在400℃/25 MPa超临界水中的腐蚀行为[J]. 金属学报, 2011, 47(7): 932-938.
. CORROSION BEHAVIORS OF NUCLEAR-GRADE STAINLESS STEEL AND FERRITIC-MARTENSITIC STEEL IN SUPERCRITICAL WATER[J]. Acta Metall Sin, 2011, 47(7): 932-938.

全文: PDF(1240 KB)  
摘要: 利用腐蚀增重法, XRD, Raman光谱和SEM研究了核级304不锈钢和铁素体-马氏体耐热钢P92在400℃/25 MPa超临界水中的腐蚀行为. 结果表明, 2种材料都以均匀腐蚀为主, 增重曲线遵循幂指数规律. 304不锈钢的腐蚀增重比P92钢低近一个数量级, 其氧化膜很薄, 局部存在少量的疖状腐蚀, 氧化膜主要由Cr2O3α-Fe2O3, Fe3O4和尖晶石结构氧化物组成. P92钢的氧化膜主要由α-Fe2O3, Fe3O4和尖晶石结构氧化物组成, 表层主要含α-Fe2O3. 延长腐蚀时间, P92钢表面氧化膜在超临界水中溶解, 导致氧化膜形貌由致密的多面体颗粒演化为相互连通的多孔网络结构.
关键词 核级不锈钢铁素体-马氏体耐热钢超临界水腐蚀氧化膜    
Abstract:The corrosion behaviors of nuclear-grade 304 stainless steel (304SS) and ferritic-martensitic steel P92 exposed to 400℃/25 MPa supercritical water were investigated. The exposed specimens were characterized by weight gain measurement, XRD, Raman spectroscopy and SEM. It is found that both materials show general corrosion and exponential kinetics in mass gain, and the mass gain of 304SS is approximately an order of magnitude less than that of steel P92. The oxide film on 304SS is rather thin and composed of Cr2O3, α-Fe2O3, Fe3O4 and spinel, some nodules were observed on the surface. While the oxide film on steel P92 consists of α-Fe2O3, Fe3O4 and spinel, more α-Fe2O3 exist in the outer surface of the oxide film. The surface morphology of oxide film on steel P92 changes from dense particles to porous network structure with increasing exposure time, which may be relative to the dissolution of oxide.
Key wordsnuclear-grade stainless steel    ferritic-martensitic steel    supercritical water    corrosion    oxide film
收稿日期: 2011-03-23     
基金资助:

国家重点基础研究发展计划项目2011CB610501和国家科技重大专项项目2011ZX06004-009资助

作者简介: 钟祥玉, 男, 1982年生, 博士生
[1] A Technology Roadmap for Generation IV Nuclear Energy Systems. U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002: 45

[2] Was G S, Teysseyre S. In: Allen T R, King P J, Nelson L, eds., Proc 12th Int Conf Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Salt Lake City: TMS, 2005: 1343

[3] Chen Y, Sridharan K, Allen T R. Corrosion 2007. Nashville, Tennessee: NACE, 2002: No.07408

[4] Gao X,Wu X Q, Zhang Z E, Guan H, Han E H. J Supercrit Fluids, 2007; 42: 157

[5] Sun M C, Wu X Q, Zhang Z E, Han E H. Corro Sci, 2009; 51: 1069

[6] Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X, Pister C. J Nucl Mater, 2007; 371: 176

[7] Was G S, Allen T R. American Nuclear Society–Int Congress on Advances in Nuclear Power Plants 2005, ICAPP’05, Seoul: American Nuclear Society, 2005: 3460

[8] Tan L, Ren X, Allen T R. Corros Sci, 2010; 52: 1520

[9] Tan L, Yang Y, Allen T R. Corros Sci, 2006; 48: 3123

[10] Yin K, Qiu S, Tang R, Zhang Q, Zhang L. J Supercrit Fluids, 2009; 50: 235

[11] Chen Y, Sridharan K, Allen T R. Corros Sci, 2006; 48: 2843

[12] Robertson J. Corros Sci, 1991; 32: 443

[13] Ziemniak S E. J Solution Chem, 1992; 21: 745

[14] Lister D H, Davidson R D, Mcalpine E. Corros Sci, 1987; 27: 113

[15] Kim J H, Hwang I S. Nucl Eng Des, 2005; 235: 1029

[16] Maslar J E, Hurst W S, Bowers W J, Hendricks J H, Aquino M I. J Electrochem Soc, 2000; 147: 2532

[17] Maslar J E, Hurst W S, Bowers W J, Hendricks J H, Aquino M I, Levin I. Appl Surf Sci, 2001; 180: 102

[18] Miyazawa T, Terachi T, Uchida S, Satoh T, Tsukada T, Satoh Y, Wada Y, Hosokawa H. J Nucl Sci Technol, 2006; 43: 884

[19] Halvarsson M, Tang J E, Asteman H, Sevensson J E, Johansson L G. Corros Sci, 2006; 48: 2014

[20] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379

(韩恩厚, 王俭秋, 吴欣强, 柯伟. 金属学报, 2010; 46: 1379)

[21] Li M S. The Oxidation of Metals. Beijing: Metallurgy Industry Press, 2001: 37

(李美栓. 金属的高温腐蚀, 北京: 冶金工业出版社, 2001: 37)

[22] Ampornrat P, Was G S. J Nucl Mater, 2007; 371: 1

[23] Kritzer P, Boukis N, Dinjus E. J Supercrit Fluids, 1999; 15: 205

[24] Sue K, Tsujinaka N, Adschiri T, Arai K. Ind Eng Chem Res, 2002; 41: 3298

[25] Sue K, Tsujinaka N, Adschiri T, Arai K, Watanabe Y. Corrosion 2002. Denver, Colorado: NACE, 2002: No.02354
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[4] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[7] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[10] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[11] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[14] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[15] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.