Please wait a minute...
金属学报  2011, Vol. 47 Issue (10): 1277-1284    DOI: 10.3724/SP.J.1037.2011.00167
  论文 本期目录 | 过刊浏览 |
激光焊接参数对TiNi合金相变温度的影响
杨成功1,单际国1,2,温鹏1,2,任家烈1
1. 清华大学机械工程系, 北京 100084
2. 清华大学先进成形制造教育部重点实验室, 北京 100084
EFFECT OF LASER WELDING PARAMETERS ON THE TRANSFORMATION TEMPERATURE OF TiNi ALLOY
YANG Chenggong 1, SHAN Jiguo 1,2, WEN Peng 1,2, REN Jialie 1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University,Beijing 100084
引用本文:

杨成功 单际国 温鹏 任家烈. 激光焊接参数对TiNi合金相变温度的影响[J]. 金属学报, 2011, 47(10): 1277-1284.
, , , . EFFECT OF LASER WELDING PARAMETERS ON THE TRANSFORMATION TEMPERATURE OF TiNi ALLOY[J]. Acta Metall Sin, 2011, 47(10): 1277-1284.

全文: PDF(1289 KB)  
摘要: 采用Nd:YAG激光和光纤激光焊接了Ti-50.7%Ni(原子分数)记忆合金, 利用DSC, SEM和EDS对焊缝金属相变温度的变化规律和影响因素进行了分析, 并对焊接接头的记忆功能进行了研究. 结果表明, 不同焊接工艺参数的焊缝金属与母材相比,相变温度有明显差异, 产生差异的主要原因是组织的不同和基体Ni含量的差别. 基体Ni含量与C, O, N的含量、富Ni沉淀相尺寸和数量以及焊接过程中Ni的烧损有关.低热输入、高激光功率密度的焊缝金属, 基体Ni含量高, 相变温度偏离母材的程度更大.焊缝金属相变温度的变化使得焊接接头形状恢复温度区间明显不同于母材, 对其使用性能产生不利影响.
关键词 激光焊接 记忆合金 相变温度 基体Ni含量    
Abstract:Nd:YAG laser and fiber laser were employed to weld Ti–50.7%Ni (atomic fraction) alloy, the effects of laser welding parameters on phase transformation temperatures, microstructure and chemical composition of weld metals were investigated by using DSC, SEM and EDS. The results show that phase transformation temperatures of base metal and weld metal are much different, and the start recovery temperature of weld joints are lower about 40 ℃ than that of base metal. Such difference is resulted from the changes of microstructure and Ni content in the matrix, which is related to the contents of element C, O and N, the size and quantity of Ni–riched precipitate, as well as the burning loss of Ni during laser welding. Laser welding with low heat input and high laser power density results in big difference of phase transformation temperature due to the high content of element N and O, small size and quantity of precipitate, little burning loss as well as the high Ni content in the matrix.
Key wordslaser welding    shape memory alloy    transformation temperature    Ni content in the matrix
收稿日期: 2011-03-28     
ZTFLH: 

TG456.7

 
作者简介: 杨成功, 男, 1977年, 博士生
[1] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and Superelasticity in Alloys. Beijing: National Defense Industry Press, 2002: 5

(赵连成, 蔡伟, 郑玉峰. 合金的形状记忆效应和超弹性. 北京: 国防工业出版社, 2002: 5)

[2] Xu Z Y. Shape Memory Materials. Shanghai: Shanghai Jiaotong University Press, 2002: 18

(徐祖耀. 形状记忆材料. 上海: 上海交通大学出版社, 2002: 18)

[3] Funakubo H, translate by Qian D F. Shape Memory Alloy. Beijing: China Machine Press, 1984: 85

(Funakubo H 著, 千东范  译. 形状记忆合金. 北京: 机械工业出版社, 1984: 85)

[4] Ren J L, Wu A P. Joining of Advanced Materials. Beijing: China Machine Press, 2000: 335

(任家烈, 吴爱萍. 先进材料的连接. 北京: 机械工业出版社, 2000: 335)

[5] Falvo A, Furgiuele F M, Maletta C. Mater Sci Eng, 2005; A412: 235

[6] Hsu Y T, Wang Y R, Chen C. Metall Mater Trans, 2001; 32A: 569

[7] Falvo A, Furgiuele F M, Maletta C. Mater Sci Eng, 2008; A481–482: 647

[8] Gugel H, Schuermann A, TheisenW. Mater Sci Eng, 2008; A481–482: 668

[9] Wang W, Chen G, Chen L, Zhao X K, Huang J H. Appl Laser, 2008; 28: 199

(王蔚, 陈庚, 陈俐, 赵兴科, 黄继华. 应用激光. 2008; 28: 199)

[10] Tang W, Sundmann B, Sandstrom R, Quiu C. Acta Mater, 1999; 47: 3457

[11] Frenzel J, George E P, Dlouhy A, Somsen Ch, Wagner M F X, Eggeler G. Acta Mater, 2010; 58: 3444

[12] Khalil–Allafi J, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255

[13] Fan G, Chen W, Yang S, Zhu J H, Ren X B, Otsuka K. Acta Mater, 2004; 52: 4351

[14] Krishna V B, Bose S, Bandyopadhyay A. Metall Mater Trans, 2007; 38A: 1097

[15] Otsuka K, Mayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 49
[1] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[2] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[3] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[4] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[5] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[6] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[8] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[9] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[10] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[11] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[12] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[13] 余滨杉,王社良,杨涛,樊禹江. 基于遗传算法优化的SMABP神经网络本构模型[J]. 金属学报, 2017, 53(2): 248-256.
[14] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[15] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.