|
|
Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究 |
白静1,2,3( ),李泽2,万震2,赵骧1 |
1 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819 2 东北大学秦皇岛分校资源与材料学院 秦皇岛 066004 3 河北省电介质与电解质功能材料实验室 秦皇岛 066004 |
|
A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys |
Jing BAI1,2,3( ),Ze LI2,Zhen WAN2,Xiang ZHAO1 |
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China 2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China 3 Hebei Provincial Laboratory for Dielectric and Electrolyte Functional Materials, Qinhuangdao 066004, China |
引用本文:
白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
Jing BAI,
Ze LI,
Zhen WAN,
Xiang ZHAO.
A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. Acta Metall Sin, 2017, 53(1): 83-89.
[1] | Sozinov A, Likhachev A A, Lanska N, et al.Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase[J]. Appl. Phys. Lett., 2002, 80: 1746 | [2] | Henry C P, Bono D, Feuchtwanger J, et al.AC field-induced actuation of single crystal Ni-Mn-Ga[J]. J. Appl. Phys., 2002, 91: 7810 | [3] | Gao L, Cai W, Liu A L, et al.Martensitic transformation and mechanical properties of polycrystalline Ni50Mn29Ga21-xGdx ferromagnetic shape memory alloys[J]. J. Alloys Compd., 2006, 425: 314 | [4] | Guo S H, Zhang Y H, Zhao Z Q, et al.Effects of Sm on phase transformation in Ni-Mn-Ga alloys[J]. J. Rare Earth, 2004, 22: 875 | [5] | Tsuchiya K, Tsutsumi A, Ohtsuka H, et al.Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements[J]. Mater. Sci. Eng., 2004, A378: 370 | [6] | Wang H B, Chen F, Gao Z Y, et al. Effect of Fe content on fracture behavior of Ni-Mn-Fe-Ga ferromagnetic shape memory alloys [J]. Mater. Sci. Eng., 2006, A438-440: 990 | [7] | Yang S Y, Liu Y, Wang C P, et al.The mechanism clarification of Ni-Mn-Fe-Ga alloys with excellent and stable functional properties[J]. J. Alloys Compd., 2013, 560: 84 | [8] | Cong D Y, Wang S, Wang Y D, et al.Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys[J]. Mater. Sci. Eng., 2008, A473: 213 | [9] | Li Y Y, Wang J M, Jiang C B.Study of Ni-Mn-Ga-Cu as single-phase wide-hysteresis shape memory alloys[J]. Mater. Sci. Eng., 2011, A528: 6907 | [10] | Stadler S, Khan M, Mitchell J, et al.Magnetocaloric properties of Ni2Mn1-xCuxGa[J]. Appl. Phys. Lett., 2006, 88: 192511 | [11] | Glavatskyy I, Glavatska N, Dobrinsky A, et al.Crystal structure and high-temperature magnetoplasticity in the new Ni-Mn-Ga-Cu magnetic shape memory alloys[J]. Scr. Mater., 2007, 56: 565 | [12] | Duan J F, Long Y, Bao B, et al.Experimental and theoretical investigations of the magnetocaloric effect of Ni2.15Mn0.85-xCuxGa (x=0.05, 0.07) alloys[J]. J. App. Phys., 2008, 103: 063911 | [13] | Jiang C B, Wang J M, Li P P, et al.Search for transformation from paramagnetic martensite to ferromagnetic austenite: NiMnGaCu alloys[J]. Appl. Phys. Lett., 2009, 95: 012501 | [14] | Roy S, Blackburn E, Valvidares S M, et al.Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa[J]. Phys. Rev., 2009, 79B: 235127 | [15] | Li C M, Luo H B, Hu Q M, et al.Site preference and elastic properties of Fe-, Co-, and Cu-doped Ni2MnGa shape memory alloys from first principles[J]. Phys. Rev., 2011, 84B: 024206 | [16] | Sokolovskiy V, Buchelnikov V, Skokov K, et al.Magnetocaloric and magnetic properties of Ni2Mn1-xCuxGa Heusler alloys: an insight from the direct measurements and ab initio and Monte Carlo calculations[J]. J. Appl. Phys., 2013, 114: 183913 | [17] | Li G J, Liu E K, Zhang H G, et al.Role of covalent hybridization in the martensitic structure and magnetic properties of shape-memory alloys: the case of Ni50Mn5+xGa35-xCu10[J]. Appl. Phys. Lett., 2013, 102: 062407 | [18] | Zeleny M, Sozinov A, Straka L, et al.First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path[J]. Phys. Rev., 2014, 89B: 184103 | [19] | Li Z B, Zou N F, Sánchez-Valdés C F, et al. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25-xGa25Cux (0≤x≤7) melt-spun ribbons[J]. J. Phys., 2016, 49D: 025002 | [20] | Hafner J.Atomic-scale computational materials science[J]. Acta Mater., 2000, 48: 71 | [21] | Kresse G, Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169 | [22] | Bl?chl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953 | [23] | Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758 | [24] | Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev., 1992, 45B: 13244 | [25] | Monkhorst H J, Pack J D.Special points for Brillouin-zone integrations[J]. Phys. Rev., 1976, 13B: 5188 | [26] | Cong D Y, Zetterstr?m P, Wang Y D, et al.Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K[J]. Appl. Phys. Lett., 2005, 87: 111906 | [27] | Wu S K, Yang S T.Effect of composition on transformation temperatures of N-Mn-Ga shape memory alloys[J]. Mater. Lett., 2003, 57: 4291 | [28] | Bai J, Raulot J M, Zhang Y D, et al.Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, Co) from first-principles calculations[J]. J. Appl. Phys., 2011, 109: 014908 | [29] | Bai J, Raulot J M, Zhang Y D, et al.Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation[J]. J. Appl. Phys., 2010, 108: 064904 | [30] | Brown P J, Crangle J, Kanomata T, et al.The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa[J]. J. Phys.: Condens. Matter, 2002, 14: 10159 | [31] | Ayuela A, Enkovaara J, Nieminen R M.Ab initio study of tetragonal variants in Ni2MnGa alloy[J]. J. Phys.: Condens. Matter, 2002, 14: 5325 | [32] | Bungaro C, Rabe K M, Corso A D.First-principles study of lattice instabilities in ferromagnetic Ni2MnGa[J]. Phys. Rev., 2003, 68B: 134104 | [33] | Chakrabarti A, Biswas C, Banik S, et al.Influence of Ni doping on the electronic structure of Ni2MnGa[J]. Phys. Rev., 2005, 72B: 073103 | [34] | Fujii S, Ishida S, Asano S.Electronic structure and lattice transformation in Ni2MnGa and Co2NbSn[J]. J. Phys. Soc. Jpn., 1989, 58: 3657 | [35] | Velikokhatnyi O I, Nuamov I I.Electronic structure and instability of Ni2MnGa[J]. Phys. Solid State, 1999, 41: 617 | [36] | Chen J, Li Y, Shang J X, et al.First principles calculations on martensitic transformation and phase instability of Ni-Mn-Ga high temperature shape memory alloys[J]. Appl. Phys. Lett., 2006, 89: 231921 | [37] | Bl?chl P E, Jepsen O, Andersen O K.Improved tetrahedron method for Brillouin-zone integrations[J]. Phys. Rev., 1994, 49B: 16223 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|