Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1093-1097    DOI: 10.3724/SP.J.1037.2010.00239
  论文 本期目录 | 过刊浏览 |
电解法处理船舶压载水对舱体用钢腐蚀行为的影响
刘光洲, 王建明, 张鉴清, 曹楚南
浙江大学化学系,  杭州 310027
EFFECT OF ELECTROLYTIC TREATMENT OF BALLAST WATER ON CORROSION BEHAVIOR OF TANK STEEL
LIU Guangzhou, WANG Jianming, ZHANG Jianqing, CAO Chunan
Chemistry Department, Zhejiang University, Hangzhou 310027
引用本文:

刘光洲 王建明 张鉴清 曹楚南. 电解法处理船舶压载水对舱体用钢腐蚀行为的影响[J]. 金属学报, 2010, 46(9): 1093-1097.
, , , . EFFECT OF ELECTROLYTIC TREATMENT OF BALLAST WATER ON CORROSION BEHAVIOR OF TANK STEEL[J]. Acta Metall Sin, 2010, 46(9): 1093-1097.

全文: PDF(1223 KB)  
摘要: 

采用开路电位-时间和电化学阻抗谱等测量方法, 研究了3.5%NaCl水溶液中总余氯(TRC)含量对船用低碳钢Q235腐蚀行为的影响. 结果表明, 舱体金属腐蚀可以分为表面迅速氧化, 表面形成氧化物覆盖层, 覆盖层发生破损导致腐蚀3个阶段. TRC含量较低 (如5和10 mg/L)时, 压载舱壁金属的腐蚀略有增强. 而当TRC含量较高时(如20 mg/L), 则可以促进舱体金属表面钝化并形成致密腐蚀产物而堵塞氧化物覆盖层的破损, 致使舱体金属的开路电位提高, 电荷传递电阻增加, 使舱体金属的抗腐蚀能力增强. 电解法压载水处理在杀灭水生生物的同时对于压载舱壁金属腐蚀而言是安全的, 且较高的TRC含量在提高杀灭效率、缩短杀灭时间的同时, 并不会导致严重的舱壁金属腐蚀.

关键词 压载水电解处理低碳钢腐蚀电化学方法    
Abstract

In order to regulate discharges of the ships' ballast water and reduce the risk of non-native species introduced from the ballast water, the international maritime organization (IMO) has developed international legislation, the ships' ballast water should be treated before discharge, and electrolysis has been developed as a promising method for ballast water treatment. However, the oxidative species such as Cl2, HClO and NaClO generated during electrolytic treatment may not only kill the non-native aquatic species but also accelerate the corrosion of the ballast tank steel. In this paper, the effect of the total residual chlorine (TRC) concentration in 3.5%NaCl solution on the corrosion of Q235 steel was studied using mainly the open-circuit potential-time measurement (EOC-t) and electrochemical impedance spectroscopy (EIS). Four TRC concentrations, 0, 5, 10 and 20 mg/L, which are around the concentration proved to be effective for removal of non--native aquatic species, were tested. Both the EOC-t and EIS results suggested that the corrosion of the Q235 steel in 3.5%NaCl solution with or without TRC can be divided into three stages: rapid oxidation of steel, coverage of metal surface by oxide film, and breakdown of the oxide film and initiation of corrosion. The negative shift of EOC and reduction of charge-transfer resistance (Rct) of the steel immersed in the solutions containing low TRC concentrations such as 5 and 10 mg/L demonstrated that the corrosion of steel is slightly enhanced. The enhancement of corrosion is due to the increase of the depolarization concentration present in the solutions. But for solution with higher TRC concentration such as\linebreak 20 mg/L, both the EOC and Rct increased, suggesting retardation of the corrosion process. The retardation of corrosion can be attributed to the passivation of the steel surface due to the strong oxidation of the active species and the formation of compact corrosion product that covers the corrosion sites. This means that increasing TRC concentration to 20 mg/L does not accelerate the corrosion of the tank steel. Therefore, higher TRC concentration for on-board electrolytic treatment is allowable, which is beneficial for shortening the treating process and improving the removal efficiency.

Key wordsballast water    electrolytic treatment    low carbon steel    corrosion    electrochemical method
收稿日期: 2010-05-18     
ZTFLH: 

O646.6

 
作者简介: 刘光洲, 男, 1969年生, 博士生
[1] Takahashi C K, Lourenco N G S, Lopes T F, Rall V L M, Lopes C A M. J Venomous Animals and Toxins Including Tropical Diseases. 2008, 14(3): 393-408 [2] Satir T. Nato Science for Peace and Security Series C - Environmental Security. 2008, 467-477 [3] Endresen O, Behrens H L, Brynestad S, Andersen A B, Skjong R. Marine Pollution Bull. 2004, 48(7-8):615-623 [4] Tsolaki E, Diamadopoulos E. J Chem Technol Biotech. 2010, 85(1):19-32 [5] Dang K, Sun P T, Xiao J K, Song Y X. J Marine Sci Appl, 2006, 5(4):58-61 [6] Song Y X, Dang k, Chi F H, Guan D L, Yin P H. J Dalian Maritime University, 2005, 31(3):45-46 (宋永欣,党坤,池方华,关德林,殷佩海,大连海事大学学报,2005,31(3):45-46) [7] Kim S J, Jang S-K, Trans. Nonferrous Met Soc China. 2009, 19: 50-55 [8] Chen Y H, Li S J, Pu C, Zhou W F, Acta Chim. Sin. 1995, 53:382 [9] Working Committee of National Administration for Environmental Protection. Analytical Methods for Water and Sewage Monitoring. 3rd ed. Beijing: China Environmental Science Publishing House, 1997:345 (国家环境保护局编委会.水和废水监测分析方法(第三版). 北京: 中国环境科学出版社, 1997 :345)
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[5] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[6] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[11] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[12] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.