Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1200-1205    DOI: 10.3724/SP.J.1037.2010.00209
  论文 本期目录 | 过刊浏览 |
Sr对Mg-9Al-1Si-0.3Zn合金微观组织和力学性能的影响
邹志文,熊守美
清华大学机械工程系汽车安全与节能国家重点实验室, 北京 100084
EFFECTS OF Sr ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg–9Al–1Si–0.3Zn ALLOY
ZOU Zhiwen, XIONG Shoumei
Department of Mechanical Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University,
Beijing 100084
引用本文:

邹志文 熊守美. Sr对Mg-9Al-1Si-0.3Zn合金微观组织和力学性能的影响[J]. 金属学报, 2010, 46(10): 1200-1205.
, . EFFECTS OF Sr ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg–9Al–1Si–0.3Zn ALLOY[J]. Acta Metall Sin, 2010, 46(10): 1200-1205.

全文: PDF(2030 KB)  
摘要: 研究了Sr元素对Mg-9Al-1Si-0.3Zn(质量分数,%)合金晶粒大小、力学性能和Mg2Si形貌的影响. 利用深腐蚀方法获得了Mg2Si细化前后的形貌, 通过其形貌变化规律研究了Sr元素对Mg2Si细化的机制.结果表明, Sr通过抑制Mg2Si生长使汉字状和加料斗形状的Mg2Si变成规则的正八面体. 当Sr的添加量达到0.32%时, Mg2Si的形貌得到了最好的改善. 同时, 合金的拉伸强度和塑性随着Sr的添加不断提高.
关键词 镁合金微观组织力学性能细化机制Mg2Si    
Abstract:Mg–Al–Si alloys (AS series alloys) with a high content of silicon performed low ductility and strengths because of large amount of coarse Chinese scripts Mg2Si particles distributed in the matrix. Trace elements, such as Ca, P, Sr and RE were selected to modify the morphology of Mg2Si particles. Among these, Sr showed remarkable modification effect, however, the modification mechanism was not clarified yet. In this work, the effects of Sr on the morphology of Mg2Si in Mg–9Al–1Si–0.3Zn (mass fraction, %) alloy and the mechanical properties were investigated, and the modification mechanism was explained by comparing Mg2Si morphologies. The Mg–9Al–1Si–0.3Zn alloy was composed of primary hopper Mg2Si particles of 40 μm in size, coarse Chinese scripts Mg2Si of 50—80 μm, island–like Mg17Al12 and the α–Mg matrix. 3D hopper crystals and Chinese scripts Mg2Si particles were extracted by the electrochemical method. Both morphologies reveal the"corner effect"which leads to the preferential growth orientation of edges and corners of the octahedron Mg2Si particle, respectively. When Sr was added into the alloy, the growth rates of both edges and corners of the Mg2Si particles were depressed significantly due to the adsorption of Sr on the surface of Mg2Si particles. When Sr addition went up to 0.32%, Mg2Si phase was fully modified to small polygonal particles of 5—20 μm. Moreover, the grain size of the alloy decreased from 210 μm to 160 μm with Sr increasing, which is in accord with the GRF (growth restriction factor) mechanism. The increasing of mechanical properties is mainly attributed to the refinement of Mg2Si phase.
Key wordsmagnesium alloy    microstructure    mechanical property    refinement mechanism    Mg2Si
收稿日期: 2010-05-04     
ZTFLH: 

TG146.2

 
基金资助:

国家高技术研究发展计划资助项目2009AA03Z114

作者简介: 邹志文, 男, 1981年生, 博士生
[1]Zhang Y, Liu L, Wei Z, Lu C. Special Casting and Nonferrous Alloys, 2005; 25: 604 (张赟龙,刘六法,卫中山,卢晨,特种铸造及有色合金, 2005; 25: 604) [2]Mabuchi M, Higashi K. Acta Mater, 1996; 44: 4611 [3]Kim J J, Kim D H, Shin K S, Kim N J. Scripta Mater, 1999; 41: 333 [4]Huang X F, Mao Z L, Yan Y F, Li Y D, Ma Y, Hao Y. J Rare Earth, 2006; 24: 480 (黄晓锋, 毛祖莉, 阎峰云, 李元东, 马颖, 郝远. 中国稀土学报, 2006; 24: 480) [5]Huang X F, Wang Q D, Zeng X Q, Zhu Y P, Lu C, Ding W J. J Rare Earth, 2004; 22: 361 (黄晓锋, 王渠东, 曾小勤, 朱燕萍, 卢晨, 丁文江. 中国稀土学报, 2004;22:361) [6]Zou Z, Xiong S. Mater Sci Forum, 2009; 610-614: 765 [7]Li S, Zou Z, Xiong S. Mater Sci Forum, 2007; 546-549: 179 [8]Yang M, Pan F, Cheng R, Shen J. Mater Sci Eng, A 2008;489:413. [9]Yang M, and Shen J.China Foundry 2009; 6: 37. [10]Srinivasan A, Pillai U T S, Swaminathan J, Das S K, Pai B C. J Mater Sci, 2006; 41: 6087 [11]Bronfin B, Katsir M, Aghion E. Mater Sci Eng, A 2001; 302: 46 [12]Fredriksson H. Scand J Metall, 1991; 20: 43 [13]Beer S, Frommeyer G, Schmid E. In: Mordike B L, Hehmann F, eds., Proc. Conf. Magnesium Alloys and their Applications, Oberursel, Germany, 1992:317 [14]Flemings M C. Solidification Processing. New York: McGraw-Hill, Inc., 1974:318 [15]Qin Q D, Zhao Y G, Liu C, Cong P J, Zhou W. J Alloys Compd, 2008; 454: 142 [16]Lee Y C, Dahle A K, Stjohn D H. Metall Matar Trans, A 2000; 31: 2895 [17]Ha F K. Microscopic Theory of Mechanical Properties of Metals. Beijing: Science Press, 1983:429. (哈富宽. 金属力学性质的微观理论. 北京: 科学出版社, 1983:429) [18]Ding W J. Magnesium Alloys and its Science and Technology. Beijing: Science Press, 2007:17. (丁文江. 镁合金科学与技术. 北京: 科学出版社, 2007:17)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.