Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1206-1214    DOI: 10.3724/SP.J.1037.2010.00286
  论文 本期目录 | 过刊浏览 |
微合金低碳钢高温拉伸实验过程的有限元模拟
张长利1,Michel Bellet2,Manuel Bobadilla3,沈厚发1,柳百成1
1. 清华大学机械工程系先进成形制造教育部重点实验室, 北京 100084
2. Mines-ParisTech, Centre de Mise en Forme des Mat'eriaux (CEMEF), Sophia Antipolis, France 06904
3. ArcelorMittal, Research and Development, Maizi`eres-l`es-Metz, France 57283
FINITE ELEMENT MODELLING OF TENSILE TEST FOR MICRO–ALLOYED LOW CARBON STEEL AT HIGH TEMPERATURE
ZHANG Changli 1, Michel Bellet 2, Manuel Bobadilla 3, SHEN Houfa 1, LIU Baicheng 1
1. Key Laboratory for Advanced Materials Processing Technology, Department of Mechanical Engineering, Tsinghua
University, Beijing 100084
2. Mines–ParisTech, Centre de Mise en Forme des Mat´eriaux (CEMEF), Sophia Antipolis, France 06904
3. ArcelorMittal, Research and Development, Maizi`eres–l`es–Metz, France 57823
引用本文:

张长利 Michel Bellet Manuel Bobadilla 沈厚发 柳百成. 微合金低碳钢高温拉伸实验过程的有限元模拟[J]. 金属学报, 2010, 46(10): 1206-1214.
, , , , . FINITE ELEMENT MODELLING OF TENSILE TEST FOR MICRO–ALLOYED LOW CARBON STEEL AT HIGH TEMPERATURE[J]. Acta Metall Sin, 2010, 46(10): 1206-1214.

全文: PDF(1140 KB)  
摘要: 开发了电势-热-力耦合有限元计算模型, 该模型考虑了微合金低碳钢高温条件下的奥氏体γ和高温铁素体δ相变, 建立了多相混合力学模型,描述了(δ+γ)两相混合区的力学行为. 应用多场耦合计算模型对拉伸实验过程进行了数值模拟. 实验及数值模拟结果表明, 拉伸试样内存在较大径向及轴向温度梯度, 该温度梯度导致试样内产生相体积分数的梯度分布, 如高温铁素体相分数和液相分数的梯度分布, 试样内产生非均匀变形, 并且应力分布极不均匀.在进行实验钢高温力学本构方程的参数标定时, 采用名义应力-应变的方法会导致较大误差, 而基于数值模拟的方法则是十分有效及准确的, 如本文所建立的数值模型.
关键词 拉伸实验 微合金低碳钢 数值模拟    
Abstract:In view of the numerical inverse identification of constitutive models, a forward numerical modelling of Gleeble tension tests is conducted. A coupled electrical–thermal–mechanical model is proposed for the resolution of electrical, energy and momentum conservation equations by means of finite element method. In momentum equation, the mixed rheological model in multi–phase region (e.g. δ–ferrite and γ austenite (δ+γ mixture)) is developed to consider the δ/γ phase transformation phenomenon for micro–alloyed low carbon steel at high temperature. Experimental and numerical results reveal that significant thermal gradients exist in specimen along longitudinal and radial directions. Such thermal gradients will lead to phase fraction gradient in specimen at high temperature, such as δ fraction gradient or liquid fraction gradient. All these gradients will contribute to the heterogeneous deformation of specimen and severe stress non–uniform distribution, which is the major difficulty for the identification of constitutive models, especially for the simple identification method based on nominal stress–strain. The proposed model can be viewed as an important achievement for further inverse identification methods, which should be used to identify constitutive parameters for steel at hgh temperature in the presence of thermal gradients.
Key wordsGleeble tension test    micro–alloyed low carbon steel    numerical modelling
收稿日期: 2010-06-13     
基金资助:

国家科技重大专项资助项目2009ZX04014-082

作者简介: 张长利, 男, 1976年生, 博士生
[1]Eskin D G, Katgerman L.A quest for a new hot tearing criterion[J].Metallurgical and Materials Transactions A,2007,38(7):1511-1519 [2]Won Y M, Yeo T J, Seol D J, Oh K H.A new criterion for internal crack formation in continuously cast steels[J].Metallurgical and Materials Transactions B,2000,31(4):779-794 [3]Bellet M, Cerri O, Bobadilla M, Chastel Y.Modeling Hot Tearing during Solidification of Steels: Assessment and Improvement of Macroscopic Criteria through the Analysis of Two Experimental Tests[J].Metallurgical and Materials Transactions A,2009,40(11):2705-2717 [4]Rappaz M, Drezet J M, Gremaud M.A new hot-tearing criterion[J].Metallurgical and Materials Transactions A,1999,30(2):449-455 [5]Suzuki M, Yu C H, Emi T.In-situ measurement of fracture strength of solidifying steel shells to predict upper limit of casting speed in continuous caster with oscillating mold[J].ISIJ International,1997,37(4):375-382 [6]Bernhard C, Xia G.Influence of alloying elements on the thermal contraction of peritectic steels during initial solidification[J].,2006,33(1):52-56 [7]Kim K, Oh K H, Lee D N.Mechanical behavior of carbon steels during continuous casting[J].Scripta Materialia,1996,34(2):301-307 [8]Seol D J, Won Y M, Yeo T J, Oh K H, Park J K.High temperature deformation behavior of carbon steel in the austenite and delta-ferrite regions[J].ISIJ International,1999,39(1):91-98 [9]Seol D J, Won Y M, Oh K H, Shin Y C, Yim C H.Mechanical behavior of carbon steels in the temperature range of mushy zone[J].ISIJ International,2000,40(4):356-363 [10]Brown S G R, James J D, Spittle J A.A 3D numerical model of the temperature-time characteristics of specimens tested on a Gleeble thermomechanical simulator[J].Modelling and Simulation in Materials Science and Engineering,1997,5(6):539-548 [11]Norris S D, Wilson I.Application of 3D numerical modelling for thermal profile optimization on the Gleeble thermomechanical simulator[J].Modelling and Simulation in Materials Science and Engineering,1999,7(3):297-309 [12]Solek K, Mitura Z, Kuziak R.A numerical model of the resistance heating system for material tests on a Gleeble simulator[J].Proc. 3rd MIT Conference on Computational Fluid and Solid Mechanics, June 14-17,2005, K.J. Bathe (ed.),2005,:1001-1003 [13]Bellet M, Fachinotti V D.ALE method for solidification modelling[J].,2004,193:4355-4381 [14]Thomas B G, Bellet M.Modeling of stress, distrotion and hot tearing[J].ASM Handbook Volume 15, Casting Division 4: Modeling and Analysis of Casting Processes, American Society of Metals,2008,15:449-461 [15]Bellet M, Heinrich A.A two-dimensional finite element thermomechanical approach to a global stress-strain analysis of steel continuous casting[J].ISIJ International,2004,44(10):1686-1695 [16]Bellet M, Decultieux F, Menai M, Bay F, Levaillant C, Chenot J L, Schmidt P, Svensson I L.Thermomechanics of the cooling stage in casting processes: Three-dimensional finite element analysis and experimental validation[J].Metallurgical and Materials Transactions B,1996,27(1):81-99 [17]Wray P J.Plastic deformation of delta-ferritic iron at intermediate strain rates[J].Metallurgical Transactions A,1976,7(11):1621-1627 [18]Ankem S, Margolin H, Greene C A, Neuberger B W, Oberson P G.Mechanical properties of alloys consisting of two ductile phases[J].Progress in Materials Science,2006,51(5):632-709 [19]Wray P J. PLASTIC-FLOW AND FAILURE OF PLAIN CARBON-STEELS IN FERRITE+AUSTENITE REGION[J].Metals Technology,1981,8(12):466-471 [20]Harste K, Schwerdtfeger K.Thermomechanical properties of iron: Viscoplasticity of ferrite and of austenite-ferrite mixtures[J].,1996,12(5):378-384 [21]Kozlowski P F, Thomas B G, Azzi J A, Hao W.Simple constitutive-equations for steel at high-temperature[J].Metallurgical Transactions A,1992,23(3):903-918 [22]Mizukami H, Shirai Y, Yamanaka A.Prediction of tensile strength and elongation of high alloy steels during solidification[J].ISIJ International,2006,46(7):1040-1046 [23]Koric S, Thomas B G.Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws[J].,2008,197:408-418
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[8] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[9] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[10] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[11] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[12] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[13] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.