Please wait a minute...
金属学报  2010, Vol. 46 Issue (3): 311-317    DOI: 10.3724/SP.J.1037.2009.00684
  论文 本期目录 | 过刊浏览 |
扩散条件下抽拉速率对Fe-4.2Ni合金定向凝固组织演化的影响
冯周荣; 沈军; 王伟; 闵志先; 傅恒志
西北工业大学凝固技术国家重点实验室; 西安 710072
EFFECTS OF PULLING RATE ON MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Fe-4.2Ni ALLOY IN DIFFUSION REGIME
FENG Zhourong; SHEN Jun; WANG Wei; MIN Zhixian; FU Hengzhi
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
引用本文:

冯周荣 沈军 王伟 闵志先 傅恒志. 扩散条件下抽拉速率对Fe-4.2Ni合金定向凝固组织演化的影响[J]. 金属学报, 2010, 46(3): 311-317.
, , , , . EFFECTS OF PULLING RATE ON MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Fe-4.2Ni ALLOY IN DIFFUSION REGIME[J]. Acta Metall Sin, 2010, 46(3): 311-317.

全文: PDF(786 KB)  
摘要: 

在内径为1 mm的细管中进行了Fe-4.2Ni亚包晶合金扩散条件下的定向凝固实验. 在15 μm/s抽拉速率下得到了树状组织、共生组织以及δ/γ两相分离生长的凝固组织, 组织演化规律为: δ单相→δ/γ两相树状组织→γ+两相共生组织→δ/γ两相分离并列生长组织; 抽拉速率为35 μm/s时, 获得了以γ岛状为主的凝固组织, 组织演化规律为: δ单相→δ/γ两相树状组织→γ-岛状组织+共生组织→δ+γ-岛状组织. 实验发现, 提高抽拉速率使凝固初始阶段的两相生长竞争加剧, 并导致凝固过程中的相选择和全程组织演化规律发生改变.

关键词 Fe-Ni合金扩散定向凝固组织演化    
Abstract

Phase selection and microstructure evolution play important roles on processing and property
control of the materials with peritectic reactions. Many interesting microstructures, such as peritectic coupled
growth (PCG), discrete banding, island banding (IB) and oscillatory tree-like structure were observed in directionally
solidified peritectic alloys. In recent years, a number of theoretical models have been developed for the phase
selection. For example, it was believed that peritectic coupled growth is initiated by island banding
and is similar to eutectic coupled growth, discrete banding is shaped by nucleation and lateral spreading of one
phase onto the other phase, and island banding is formed when the nucleation rate of one phase on the other phase
growth interface is higher than a critical value, and etc.. But these models were developed under the assumption
that the growth of the phases are controlled by diffusion only, whereas the actual experimental studies were
mainly carried out in bulk metallic samples with the presence of convection. Although it has been believed that
the convection effects on microstructure evolution are very important and could not be neglected, studies were
seldom carried out in diffusive regime. In this paper, directional solidification of Fe-4.2Ni hypo-peritectic alloy
in diffusive regime was carried out in a Bridgman furnace by placing the samples in 1 mm inner diameter thin
tubes. The experimental results show that various microstructures and phase selections are obtained in the
directionally solidified thin samples at the pulling rates of 15 and 35 $\mu$m/s. Tree-like structure,
peritectic coupled growth and the steadily solidified structure of two phases separated growth are formed at the
pulling rate of 15 $\mu$m/s, and the microstructures evolution is: single phase δ→tree-like
structure→γ and PCG→separately growing δ/γ. At the pulling rate of
35 μm/s, the main microstructure is γ-IB, and the microstructures evolution is: δ→tree-like structure→γ-IB in the center and PCG at the edge→δ in the center
and γ-IB at the edge. As the pulling rate increases from 15 to 35 μm/s, the morphology of tree-like
structure formed by the competitive growth between the nucleated γ-phase and the parent δ-phase
becomes complicated. It is found that the pulling rate plays an important role in both the formation and evolution
of various microstructures.

Key wordsFe-Ni alloy    diffusion    directional solidification    microstructure evolution
收稿日期: 2009-10-19     
基金资助:

国家自然科学基金项目50774061和凝固技术国家重点实验室自主研究课题项目28--TP--2009资助

作者简介: 冯周荣, 男, 1983年生, 博士生

[1] Luo W Z, Shen J, Min Z X, Fu H Z. J Cryst Growth, 2008; 310: 5441
[2] LuoWZ, Shen J, Li Q L,Man WW, Fu H Z. Acta Matell Sin, 2007; 43: 897
(罗文忠, 沈军, 李庆林, 满伟伟, 傅恒志. 金属学报, 2007; 43: 897)

[3] Kuribayashi K, Ozawa S. J Alloys Compd, 2006; 408–412: 266
[4] Wu X D, Xu K X, Qiu J H, Pan P J, Zhou K. Physica, 2008; 468C: 435
[5] Kerr H W, Kurz W. Int Mater Rev, 1996; 41: 129
[6] Vandyoussefi M, Kerr H W, Kurz W. Acta Mater, 2000; 48: 2297

[7] Vandyoussefi M, Kerr H W, Kurz W. Acta Mater, 1997; 45: 4093
[8] Mazumder P, Trivedi R. Phys Rev Lett, 2002; 88: 235
[9] Mazumder P, Trivedi R, Karm A. Metall Trans, 2000; 31A: 1233
[10] Trivedi R, Miyahara H, Mazumder P, Simsek E, Tewari S N. J Cryst Growth, 2001; 222: 365
[11] Dobler S, Lo T S, Plapp M, Karma A, Kurz W. Acta Mater, 2004; 52: 2795
[12] Chen J, Sung P K, Tewari S N, Poirier D R, de Groh III H C. Mater Sci Eng, 2003; A357: 397
[13] Luo L S. PhD Thesis, Harbin Institute of Technology, 2008
(骆良顺. 哈尔滨工业大学博士论文, 2008)
[14] Lo T S, Dobler S, Plapp M, Karma A, Kurz W. Acta Mater, 2003; 51: 599
[15] Lo T S, Karma A, Plapp M. Phys Rev, 2001; 63E: 031504
[16] Trivedi R, Park J S. J Cryst Growth, 2002; 235: 572
[17] Trivedi R, Shin J H. Mater Sci Eng, 2005; A413–414: 288
[18] Fu H Z, Luo L S, Su Y Q, Guo J J, Li S M, Liu L. Chin J Nonferrous Met, 2007; 17: 349
(傅恒志, 骆良顺, 苏彦庆, 郭景杰, 李双明, 刘 林. 中国有色金属学报, 2007; 17: 349)

[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[11] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[12] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[13] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[14] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[15] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.