Please wait a minute...
金属学报  2010, Vol. 46 Issue (3): 318-323    DOI: 10.3724/SP.J.1037.2009.00590
  论文 本期目录 | 过刊浏览 |
C掺杂对Al中He行为的影响
向鑫1); 陈长安1;2); 刘柯钊1;2); 罗丽珠2); 刘婷婷2); 王小英2)
1) 中国工程物理研究院; 绵阳 621900
2) 表面物理与化学国家重点实验室; 绵阳 621700
EFFECT OF C DOPING ON He BEHAVIOR IN Al
XIANG Xin1); CHEN Chang'an1;2); LIU Kezhao1;2); LUO Lizhu2); LIU Tingting2); WANG Xiaoying2)
1) China Academy of Engineering Physics; Mianyang 621900
2) National Key Laboratory for Surface Physics and Chemistry; Mianyang 621700
引用本文:

向鑫 陈长安 刘柯钊 罗丽珠 刘婷婷 王小英. C掺杂对Al中He行为的影响[J]. 金属学报, 2010, 46(3): 318-323.
, , , , , . EFFECT OF C DOPING ON He BEHAVIOR IN Al[J]. Acta Metall Sin, 2010, 46(3): 318-323.

全文: PDF(1030 KB)  
摘要: 

用离子注入技术实现了Al表面C元素的掺杂, 并利用XPS, XRD, TEM和SEM研究了C掺杂对Al中离子
注入He行为的影响. 结果表明, 掺杂的C在Al表面形成了Al4C3, 随着C掺杂量的增加, Al表面组织的择优取向
和晶胞体积发生改变, 从而影响了Al中的He离子注入行为. 预先掺杂的C对He离子注入Al表面的鼓泡行为有重
要影响, 其影响程度与掺杂剂量有关. 小剂量C掺杂后, 能有效抑制鼓泡的长大, 并使Al表面鼓泡均匀分布; 更高
剂量C掺杂后, C对表面鼓泡的抑制作用减弱, 甚至加剧He离子的辐照损伤, Al表面出现孔洞和剥落现象. 掺杂的
C对Al基体的微观结构也有很大影响.

关键词 AlC掺杂He行为鼓泡微观结构    
Abstract

It has been verified that He embrittlement in metals could be suppressed by proper additions of alloying elements, and this effect is related to highly dispersive secondary phase precipitated in the matrix. Effect of C doping on ion implantated He behavior in Al has been investigated by XPS, XRD, TEM and SEM. It was found that the secondary phase precipitated in the surface of Al doped with C is Al4C3. With the increase of the dose of C, the volume of Al unit cell increased, and the preferred orientation of Al surface changed from (100 to (111), which will affect the He behavior in Al. The pre-doped C played an important role in the Al surface blistering induced by He ion implantation, and the extent is dependent on the dose of pre-doped C. When the Al sample was pre-doped by C with smaller fluence (≦5.0×1020 ions/m2), the growth of blisterings is suppressed effectively, and the surface blisterings are distributed more uniformly. However, when pre-doped C has larger fluence (≧1.0×1021 ions/m2), the suppression effect of C on surface blistering would be reduced, and even the irradiation damage of He ions (voids and flakings) would appear in the surface. The effect of C doping on the microstructure in Al was also observed.

Key wordsAl    C doping    He behavior    blistering    microstructure
收稿日期: 2009-09-08     
基金资助:

国家自然科学基金资助项目50671017

作者简介: 向鑫, 男, 1982年生, 硕士

[1] Robinson S L. Mater Sci Eng, 1987; 96: 7
[2] Robinson S L, Thomas G J. Metall Mater Trans, 1991; 22A: 879
[3] Matta M K, Kesternich W. Bull Mater Sci, 1990; 13: 313

[4] Rajaraman R, Amarendra G, Viswanathan B, Sundar C S, Gopinathan K P. J Nucl Mater, 1996; 231: 55
[5] Yamamoto N, Nagakawa J, Shiraishi H. J Nucl Mater, 1995; 226: 185
[6] Zhang C H, Jang J S, Yang Y T, Song Y, Sun Y M, Cho H D, Jin Y F. Chin Sci Bull, 2008; 53: 3416
[7] Wright R N, Van siclen C D, Usmar S G, Mochel M E. J Nucl Mater, 1991; 182: 281
[8] Kamigaki N, Furuno S, Hojou K, Ono K, Hashioto E, Izui K, Kino T. J Nucl Mater, 1992; 191–194: 1214
[9] Xiang X, Chen C A, Liu K Z, Peng L X, Rao Y C. Rare Met, 2009; 33: 510
(向鑫, 陈长安, 刘柯钊, 彭丽霞, 饶咏初. 稀有金属, 2009; 33: 510)

[10] Weast R C. Handbook of Chemistry and Physics. 64th Ed., New York: CRC Press, 1985: 54
[11] Streletskii A N, Povstugar I V, Borunova A B, Lomaeva S F, Butyagin P Yu. Colloid J, 2006; 68: 470
[12] Zhang W F, Li J R. Surf Technol, 2009; 38: 33
(张文峰, 李建蓉. 表面技术, 2009; 38: 33)

[13] Huang M D, Sun C, Lin G Q, Dong C, Wen L S. Acta Metall Sin, 2003; 39: 516
(黄美东, 孙超, 林国强, 董闯, 闻立时. 金属学报, 2003; 39: 516)

[14] Wilson K L, Thomas G J. J Nucl Mater, 1976; 63: 266
[15] Fukahiro T, Kanda Y, Mori K, Tobimatsu H. J Nucl Mater, 1985; 133–134: 277
[16] Li Y L, Meng J L, Wei X Z. South Chin Univ Technol
(李友麟, 蒙继龙, 魏兴钊. 华南理工大学学报(自然学科版), 1989; 17: 60)

[17] Kalashnikov A N, Chernov I I, Kalin B A, Binyukova S Y. J Nucl Mater, 2002; 307–311: 362
[18] Kesternich W. Radiat Eff, 1983; 78: 261
[19] De waard H, Pleiter F, Boerma D O, Niesen L, Zhang G L. Nucl Iustr Meth Phys Res, 1983; 209–2l0: 899

[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[6] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[7] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[8] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[9] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[10] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[11] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[12] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[13] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[14] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[15] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.