|
|
水平集法模拟GH4706合金动态再结晶过程 |
郑德宇, 夏玉峰( ), 曾扬, 周杰 |
重庆大学 材料科学与工程学院 重庆 400044 |
|
Dynamic Recrystallization Process Simulation of GH4706 Alloy by Level-Set Method |
ZHENG Deyu, XIA Yufeng( ), ZENG Yang, ZHOU Jie |
School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China |
引用本文:
郑德宇, 夏玉峰, 曾扬, 周杰. 水平集法模拟GH4706合金动态再结晶过程[J]. 金属学报, 2025, 61(9): 1425-1437.
Deyu ZHENG,
Yufeng XIA,
Yang ZENG,
Jie ZHOU.
Dynamic Recrystallization Process Simulation of GH4706 Alloy by Level-Set Method[J]. Acta Metall Sin, 2025, 61(9): 1425-1437.
[1] |
Zhang S, Zeng L R, Zhao D Q, et al. Comparison study of microstructure and mechanical properties of standard and direct-aging heat treated superalloy Inconel 706 [J]. Mater. Sci. Eng., 2022, A839: 142836
|
[2] |
Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
|
[2] |
杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
|
[3] |
Huang S. Microstructure control and mechanical properties optimization of GH4706 wrought superalloy [D]. Shenyang: Northeastern University, 2014
|
[3] |
黄 烁. 变形高温合金GH4706组织控制与力学性能优化 [D]. 沈阳: 东北大学, 2014
|
[4] |
Yang W H, deBarbadillo J J, Morita K, et al. A freckle criterion for the solidification of superalloys with a tilted solidification front [J]. JOM, 2004, 56(9): 56
|
[5] |
Fesland J P, Petit P. Manufacturing alloy 706 forgings [A]. Loria E A. Superalloys 718, 625, 706 and Various Derivatives [M]. Warrendale: TMS, 1994: 229
|
[6] |
Sun Y F, Xiang C, Zhang T, et al. Microstructures and mechanical properties of GH4169 superalloy manufactured by selective laser melting [J]. Acta Metall. Sin., 2024, DOI: 10.11900/0412.1961.2024.00075
|
[6] |
孙勇飞, 向 超, 张 涛 等. 选区激光熔化GH4169高温合金的微观组织和力学性能 [J]. 金属学报, 2024, DOI: 10.11900/0412.1961.2024.00075
|
[7] |
Li L, Wang Y, Li H, et al. Effect of the Zener-Hollomon parameter on the dynamic recrystallization kinetics of Mg-Zn-Zr-Yb magnesium alloy [J]. Comput. Mater. Sci., 2019, 166: 221
|
[8] |
Meng Y, Sugiyama S, Yanagimoto J. Microstructure of Cr-V-Mo steel processed by recrystallization and partial melting and its effect on mechanical properties [J]. Mater. Trans., 2014, 55: 921
|
[9] |
Li F L, Fu R, Bai Y R, et al. Effects of initial grain size and strengthening phase on thermal deformation and recrystallization behavior of GH4096 superalloy [J]. Acta Metall. Sin., 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
|
[9] |
李福林, 付 锐, 白云瑞 等. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响 [J]. 金属学报, 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
|
[10] |
Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei [J]. J. Chem. Phys., 1940, 8: 212
|
[11] |
Sellars C M. The physical metallurgy of hot working [A]. Hot Working and Forming Processes: Proceedings of an International Conference on Hot Working and Forming Processes [M]. London: The Metals Society, 1980
|
[12] |
Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Mater., 2009, 57: 2748
|
[13] |
Rollett A D, Raabe D. A hybrid model for mesoscopic simulation of recrystallization [J]. Comput. Mater. Sci., 2001, 21: 69
|
[14] |
Zhu H J, Chen F, Zhang H M, et al. Review on modeling and simulation of microstructure evolution during dynamic recrystallization using cellular automaton method [J]. Sci. China Technol. Sci., 2020, 63: 357
|
[15] |
Xu Q H, Zhang C, Zhang L W, et al. Cellular automaton modeling of dynamic recrystallization of nimonic 80A superalloy based on inhomogeneous distribution of dislocations inside grains [J]. J. Mater. Eng. Perform., 2018, 27: 4955
|
[16] |
Han Z Q. Simulation of dynamic recrystallization based on Monte Carlo method [D]. Ji'nan: Shandong University, 2007
|
[16] |
韩振强. 基于Monte Carlo方法的金属动态再结晶组织模拟 [D]. 济南: 山东大学, 2007
|
[17] |
Zhou G W, Li Z H, Li D Y, et al. A polycrystal plasticity based discontinuous dynamic recrystallization simulation method and its application to copper [J]. Int. J. Plast., 2017, 91: 48
|
[18] |
Hallberg H. Approaches to modeling of recrystallization [J]. Metals, 2011, 1: 16
|
[19] |
Bernacki M, Logé R E, Coupez T. Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials [J]. Scr. Mater., 2011, 64: 525
|
[20] |
Scholtes B, Boulais-Sinou R, Settefrati A, et al. 3D level set modeling of static recrystallization considering stored energy fields [J]. Comput. Mater. Sci., 2016, 122: 57
|
[21] |
Cruz-Fabiano A L, Logé R, Bernacki M. Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework [J]. Comput. Mater. Sci., 2014, 92: 305
|
[22] |
Jin Y, Bozzolo N, Rollett A D, et al. 2D finite element modeling of misorientation dependent anisotropic grain growth in polycrystalline materials: Level set versus multi-phase-field method [J]. Comput. Mater. Sci., 2015, 104: 108
|
[23] |
Bernacki M. Kinetic equations and level-set approach for simulating solid-state microstructure evolutions at the mesoscopic scale: State of the art, imitations, and prospects [J]. Prog. Mater. Sci., 2024, 142: 101224
|
[24] |
Agnoli A, Bernacki M, Logé R, et al. Selective Growth of low stored energy grains during δ sub-solvus annealing in the inconel 718 nickel-based superalloy [J]. Metall. Mater. Trans., 2015, 46A: 4405
|
[25] |
Gao J. Research on topology optimization for multiscale design of structure-material based on parametric level set [D]. Wuhan: Huazhong University of Science and Technology, 2019
|
[25] |
高 杰. 基于参数化水平集的结构/材料多尺度拓扑优化设计研究 [D]. 武汉: 华中科技大学, 2019
|
[26] |
Peczak P, Luton M J. The effect of nucleation models on dynamic recrystallization I. Homogeneous stored energy distribution [J]. Philos. Mag., 1993, 68B: 115
|
[27] |
Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J]. Acta Mater., 2009, 57: 5218
|
[28] |
Guo Q M, Li D F, Peng H J, et al. Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates [J]. Rare Met., 2012, 31: 215
|
[29] |
Rios P R, Siciliano Jr F S, Sandim H R Z, et al. Nucleation and growth during recrystallization [J]. Mater. Res., 2005, 8: 225
|
[30] |
Beltran O, Huang K, Logé R E. A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress [J]. Comput. Mater. Sci., 2015, 102: 293
|
[31] |
Li J C, Wu X D, Liao B, et al. Simulation of low proportion of dynamic recrystallization in 7055 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1902
|
[32] |
Quan G Z, Zhang K K, An C, et al. Analysis of dynamic recrystallization behaviors in resistance heating compressions of heat-resistant alloy by multi-field and multi-scale coupling method [J]. Comput. Mater. Sci., 2018, 149: 73
|
[33] |
Reyes L A, Garza C, Delgado M, et al. Cellular automata modeling for rotary friction welding of Inconel 718 [J]. Mater. Manuf. Processes, 2022, 37: 877
|
[34] |
Hu W Z. Research on the modeling and optimization algorithms for the slab design and the hot rolling production planning of steel plate [D]. Chongqing: Chongqing University, 2019
|
[34] |
呼万哲. 中厚板坯料设计及其热轧生产计划建模与优化算法研究 [D]. 重庆: 重庆大学, 2019
|
[35] |
Quan G Z, Zhang Y, Lei S, et al. Characterization of flow behaviors by a PSO-BP integrated model for a medium carbon alloy steel [J]. Materials, 2023, 16: 2982
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|