Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 977-989    DOI: 10.11900/0412.1961.2022.00333
  研究论文 本期目录 | 过刊浏览 |
构型化石墨烯纳米片/2009Al复合材料热膨胀系数模拟
周丽1, 张明远1, 杨欣盛1(), 刘振宇2(), 王全兆2, 肖伯律2, 马宗义2
1 烟台大学 机电汽车工程学院 烟台 264005
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Simulation of Thermal Expansion Coefficient of Configurational GNPs/2009Al Composites
ZHOU Li1, ZHANG Mingyuan1, YANG Xinsheng1(), LIU Zhenyu2(), WANG Quanzhao2, XIAO Bolv2, MA Zongyi2
1 School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

周丽, 张明远, 杨欣盛, 刘振宇, 王全兆, 肖伯律, 马宗义. 构型化石墨烯纳米片/2009Al复合材料热膨胀系数模拟[J]. 金属学报, 2024, 60(7): 977-989.
Li ZHOU, Mingyuan ZHANG, Xinsheng YANG, Zhenyu LIU, Quanzhao WANG, Bolv XIAO, Zongyi MA. Simulation of Thermal Expansion Coefficient of Configurational GNPs/2009Al Composites[J]. Acta Metall Sin, 2024, 60(7): 977-989.

全文: PDF(5204 KB)   HTML
摘要: 

石墨烯纳米片/Al复合材料热特性与其微观组织密切相关,但尚缺系统性的从微观结构模拟到热学性能预测。本工作利用有限元软件ABAQUS建立了微观石墨烯纳米片/2009Al复合材料三维模型,分析了石墨烯纳米片分布形式、几何构型和体积分数对复合材料热膨胀系数的影响。结果表明,复合材料的热膨胀系数受石墨烯纳米片的分布形式影响较小。只有当石墨烯纳米片在基体内的分布形式为2簇时,热膨胀系数比其他分布形式小。石墨烯纳米片几何构型和体积分数对热膨胀系数影响明显。随着石墨烯纳米片体积分数的增加,复合材料热膨胀系数逐渐减小。与基体相比,当复合材料中石墨烯纳米片的体积分数为2.5%,且呈集聚分布时,热膨胀系数下降幅度最大,约为27%。通过与实验结果对比,验证了模型的正确性。

关键词 构型有限元模拟石墨烯纳米片/2009Al复合材料热膨胀系数    
Abstract

Nanocomposites comprising of graphene nanoplatelets (GNPs) and aluminum (Al) have gained tremendous interest over the past few decades owing to their exceptional mechanical, thermal, and electrical properties. The microstructure of GNPs in these composites, such as dispersion, and orientation, significantly affects the loading capacity and thermal properties. However, previous studies on the mechanical properties have overshadowed investigations into the thermal expansion coefficient of GNPs/Al composites with different microstructures. In this study, a three-dimensional model of microscopic GNPs/2009Al composites was established using the finite element method and the software ABAQUS. The effects of the distribution, geometric configuration, and volume fraction of graphene nanoplatelets on the thermal expansion coefficient of the composite were analyzed. Results show that the thermal expansion coefficient of the composite is less affected by the distribution form of graphene nanoplatelets. However, when the distribution form of graphene nanoplatelets is 2 clusters, the thermal expansion coefficient is smaller than other distribution forms. Moreover, the geometry and volume fraction of graphene nanoplatelets have a significant effect on the thermal expansion coefficient. An increase in the volume fraction of graphene nanoplatelets leads to a decrease in the thermal expansion coefficient of the composites. When the volume fraction of graphene nanoplatelets in the composite is 2.5% and the aggregate distribution is bundled, the thermal expansion coefficient decreases the most (by about 27%) compared to the matrix. By comparing with experimental results, the validity of the model is verified. The conclusions of this study can provide a theoretical basis for designing and optimizing the configuration of graphene nanoplatelets/aluminum matrix composites.

Key wordsconfiguration    finite element simulation    GNPs/2009Al composites    coefficient of thermal expansion
收稿日期: 2022-07-08     
ZTFLH:  TG339  
基金资助:国家自然科学基金项目(51931009);国家自然科学基金项目(52120105001);山东省自然科学基金项目(ZR2023ME097)
通讯作者: 刘振宇,zyliu@imr.ac.cn,主要从事金属基复合材料和搅拌摩擦焊接与加工的研究;
杨欣盛,yxsjump@163.com,主要从事金属基复合材料大变形及模拟计算的研究
Corresponding author: LIU Zhenyu, associate professor, Tel: (024)23971749, E-mail: zyliu@imr.ac.cn;
作者简介: 周 丽,女,1971年生,教授,博士
图1  石墨烯纳米片(GNPs)/2009Al复合材料的代表性体积元(RVE)模型
图2  局部坐标与材料方向
PropertyParameterGNPs[25]2009Al[26]Unit
Elastic propertyE1 = E294360069000MPa
E31950069000MPa
ν120.140.35
ν13-0.090.35
ν23-0.090.35
G1241418025555MPa
G13 = G23501025555MPa
Thermal expansion coefficientα1 = α2-523.210-6oC-1
α30.7523.210-6oC-1
表1  有限元模拟中的材料特性[25,26]
图3  相对面的2个对应节点
图4  边界条件
图5  GNPs不同分布形式的复合材料RVE
图6  不同GNPs分布形式下GNPs/2009Al复合材料X方向的应力(σ11)分布
图7  不同分布形式下GNPs的σ11分布
图8  不同GNPs分布形式下GNPs/2009Al复合材料X方向的应变(ε11)分布
图9  不同GNPs分布形式下GNPs的ε11分布
图10  GNPs分布形式对GNPs/2009Al复合材料热膨胀系数的影响
图11  典型GNPs几何构型复合材料的RVE模型
图12  不同GNPs构型GNPs/2009Al复合材料的σ11分布
图13  不同GNPs构型GNPs/2009Al复合材料GNPs的σ11分布
图14  不同GNPs构型GNPs/2009Al复合材料的ε11分布
图15  不同构型GNPs的ε11分布
图16  不同角度的点路径示意图
图17  不同路径上各点的应变
图18  GNPs构型对GNPs/2009Al复合材料热膨胀系数的影响
图19  GNPs/2009Al复合材料热膨胀系数随GNPs体积分数的变化
1 Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading [J]. Strateg. Study CAE, 2020, 22(2): 79
1 武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战 [J]. 中国工程科学, 2020, 22(2): 79
2 Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
2 张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
3 Zhang H P, Xu C, Xiao W L, et al. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion [J]. Mater. Sci. Eng., 2016, A658: 8
4 Li M, Gao H Y, Liang J M, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites [J]. Mater. Charact., 2018, 140: 172
5 Lin Z Q, Zheng W, Li H, et al. Microstructures and mechanical properties of TA15 titanium alloy and graphene reinforced TA15 composites prepared by spark plasma sintering [J]. Acta Metall. Sin., 2021, 57: 111
doi: 10.11900/0412.1961.2020.00186
5 林彰乾, 郑 伟, 李 浩 等. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能 [J]. 金属学报, 2021, 57: 111
doi: 10.11900/0412.1961.2020.00186
6 Yu Z H, Yang W S, Zhou C, et al. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method [J]. Carbon, 2019, 141: 25
7 Zhang Z W, Liu Z Y, Xiao B L, et al. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2018, 135: 215
8 Zhao N Q, Guo S Y, Zhang X, et al. Progress on graphene/copper composites focusing on reinforcement configuration design: A review [J]. Acta Metall. Sin., 2021, 57: 1087
doi: 10.11900/0412.1961.2021.00120
8 赵乃勤, 郭斯源, 张 翔 等. 基于增强相构型设计的石墨烯/Cu复合材料研究进展 [J]. 金属学报, 2021, 57: 1087
doi: 10.11900/0412.1961.2021.00120
9 Chang Q M, Li Z L, Xu F Y. Preparation and properties of graphene reinforced aluminum matrix composites [J]. Hot Work. Technol., 2022, 51(14): 70
9 常庆明, 李宗伦, 许芳宇. 石墨烯增强铝基复合材料的制备及性能研究 [J]. 热加工工艺, 2022, 51(14): 70
10 Wang C Y, Su Y S, Ouyang Q B, et al. Enhanced through-plane thermal conductivity and mechanical properties of vertically aligned graphene nanoplatelet@graphite flakes reinforced aluminum composites [J]. Diamond Relat. Mater., 2020, 108: 107929
11 Evans W, Prasher R, Fish J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids [J]. Int. J. Heat Mass Transfer, 2008, 51: 1431
12 Liu G, Zhao N Q, Shi C S, et al. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites [J]. Mater. Sci. Eng., 2017, A699: 185
13 Lin D, Richard Liu C, Cheng G J. Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement [J]. Acta Mater., 2014, 80: 183
14 Sedehi S M R, Khosravi M, Yaghoubinezhad Y. Mechanical properties and microstructures of reduced graphene oxide reinforced titanium matrix composites produced by spark plasma sintering and simple shear extrusion [J]. Ceram. Int., 2021, 47: 33180
15 Zhou X, Liu X X. Mechanical properties and strengthening mechanism of graphene nanoplatelets reinforced magnesium matrix composites [J]. Acta Metall. Sin., 2020, 56: 240
doi: 10.11900/0412.1961.2019.00158
15 周 霞, 刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制 [J]. 金属学报, 2020, 56: 240
16 Mandal A, Tiwari J K, AlMangour B, et al. Microstructural and thermal expansion behaviour of graphene reinforced 316L stainless steel matrix composite prepared via powder bed fusion additive manufacturing [J]. Results Mater., 2021, 11: 100200
17 Wang Z T, Dai D Y, Liu A L, et al. Microstructure and thermal conductivity of graphene-Al composite [J]. J. Heilongjiang Univ. Sci. Technol., 2019, 29: 201
17 王振廷, 戴东言, 刘爱莲 等. 石墨烯铝基复合材料的组织和导热性能 [J]. 黑龙江科技大学学报, 2019, 29: 201
18 Jeon C H, Jeong Y H, Seo J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing [J]. Int. J. Precis. Eng. Manuf., 2014, 15: 1235
19 Saboori A, Pavese M, Badini C, et al. Microstructure and thermal conductivity of Al-graphene composites fabricated by powder metallurgy and hot rolling techniques [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 675
20 Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network [J]. Carbon, 2018, 127: 102
21 Chu K, Wang X H, Li Y B, et al. Thermal properties of graphene/metal composites with aligned graphene [J]. Mater. Des., 2018, 140: 85
22 Han T W, He P F, Wang J, et al. Numerical simulation of temperature dependence of tensile mechanical properties for single graphene sheet [J]. J. Tongji Univ. (Nat. Sci.), 2009, 37: 1638
22 韩同伟, 贺鹏飞, 王 健 等. 石墨烯拉伸力学性能温度相关性的数值模拟 [J]. 同济大学学报(自然科学版), 2009, 37: 1638
23 Prieto R, Molina J M, Narciso J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications [J]. Scr. Mater., 2008, 59: 11
24 Rao M V, Mahajan P, Mittal R K. Effect of architecture on mechanical properties of carbon/carbon composites [J]. Compos. Struct., 2008, 83: 131
25 Liu Y L. Study on the mechanical and thermal properties of 3D braided composites with graphene nanoplatelets/carbon nanotubes reinforced resin matrix [D]. Chengdu: University of Electronic Science and Technology of China, 2021
25 刘云龙. 石墨烯/碳纳米管强化树脂基3D编织复合材料力-热性能研究 [D]. 成都: 电子科技大学, 2021
26 Huang K. The Study on fabrication and properties of high strength and high thermal conductivity graphite/aluminium composites material [D]. Wuhan: Jianghan University, 2018
26 黄 凯. 高强度高导热镀层石墨铝复合材料的制备与性能研究 [D]. 武汉: 江汉大学, 2018
27 Xia Z H, Zhang Y F, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. Int. J. Solids Struct., 2003, 40: 1907
28 Bhouri M, Mzali F. Analysis of thermo-elastic and physical properties of recycled 2017 aluminium alloy/Gp composites: Thermal management application [J]. Mater. Res. Express, 2020, 7: 026546
29 Chawla N, Deng X, Schnell D R M. Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites [J]. Mater. Sci. Eng., 2006, A426: 314
30 Bhouri M, Mzali F, Berdin C, et al. Numerical homogenization and experimental study of the influence of graphite content and voids on the coefficients of thermal expansion of 2017 aluminium matrix composites [J]. Mater. Today Commun., 2021, 26: 101638
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[3] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[4] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[6] 王慧远,李超,李志刚,徐进,韩洪江,管志平,宋家旺,王珵,马品奎. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望[J]. 金属学报, 2019, 55(6): 683-691.
[7] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[8] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[9] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[10] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[11] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
[12] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[13] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
[14] 赵 冰 李志强 韩秀全 廖金华 侯红亮 白秉哲. 基于刚黏塑性本构关系的钛合金空心整体结构成形过程三维有限元分析[J]. 金属学报, 2010, 46(4): 396-403.
[15] 吴波 魏悦广 谭建松 王建平. 纳米晶Ni晶间断裂的数值模拟[J]. 金属学报, 2009, 45(9): 1077-1082.