Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1731-1745    DOI: 10.11900/0412.1961.2022.00520
  研究论文 本期目录 | 过刊浏览 |
多场耦合侵蚀下环保Ag/Ti2SnC复合电接触材料的微/纳米力学行为及微结构演变
丁宽宽1, 丁健翔1,2(), 张凯歌1, 白忠臣3, 张培根2(), 孙正明1,2
1 安徽工业大学 材料科学与工程学院 马鞍山 243002
2 东南大学 材料科学与工程学院 江苏省先进金属材料重点实验室 南京 211189
3 贵州大学 贵州省光电子技术与应用重点实验室 贵阳 550025
Micro/Nano-Mechanical Behavior and Microstructure Evolution of Eco-Friendly Ag/Ti2SnC Composite Electrical Contacts Under Multi-Field Coupled Erosion
DING Kuankuan1, DING Jianxiang1,2(), ZHANG Kaige1, BAI Zhongchen3, ZHANG Peigen2(), SUN Zhengming1,2
1 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
2 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
3 Guizhou Province Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang 550025, China
引用本文:

丁宽宽, 丁健翔, 张凯歌, 白忠臣, 张培根, 孙正明. 多场耦合侵蚀下环保Ag/Ti2SnC复合电接触材料的微/纳米力学行为及微结构演变[J]. 金属学报, 2024, 60(12): 1731-1745.
Kuankuan DING, Jianxiang DING, Kaige ZHANG, Zhongchen BAI, Peigen ZHANG, Zhengming SUN. Micro/Nano-Mechanical Behavior and Microstructure Evolution of Eco-Friendly Ag/Ti2SnC Composite Electrical Contacts Under Multi-Field Coupled Erosion[J]. Acta Metall Sin, 2024, 60(12): 1731-1745.

全文: PDF(6078 KB)   HTML
摘要: 

实际服役过程中低压开关的过早失效主要归因于电弧侵蚀,因此阐明材料微观结构、力学性能退化及电弧侵蚀机理对进一步开发环保MAX相增强银基复合电接触材料进而推动低压开关材料更新换代具有重要意义。本工作沿Ag/Ti2SnC电触头横截面从电弧侵蚀层到近电弧侵蚀层再到基体内部依次进行了微/纳米压痕实验,分析对比了不同区域显微硬度、纳米硬度、弹性模量、蠕变以及塑性/弹性性能沿电弧侵蚀方向的梯度变化行为。在综合分析不同区域微观形貌和元素组成的基础上,揭示了增强相Ti2SnC和Ag基体的结构和成分演变,解析了Ag/Ti2SnC复合材料微观结构梯度变化与微/纳米力学性能之间的内在关系。使用COMSOL模拟进一步验证了多场耦合侵蚀下Ag/Ti2SnC复合材料的物理特征,进而提出电弧侵蚀机理。

关键词 Ag/Ti2SnC复合材料微/纳米力学行为微结构演变COMSOL模拟多场耦合侵蚀    
Abstract

Silver (Ag)-matrix-composite electrical contact materials (ECMs) are widely used in railway, manufacturing, electric power distribution, and aerospace systems, owing to their excellent electrical and thermal conductivities and good mechanical and anti-erosion properties. In particular, they play a key role in low-voltage switches, which are vital in the global electrical economy. To date, substituting the toxic Ag/CdO ECMs has become a bottleneck in the development of low-voltage switches. Over the past decades, Ag/SnO2, Ag/ZnO, Ag/Ni, and Ag/C have been exploited as substitutes for Ag/CdO ECMs, but their intrinsic defects make them unsuitable; therefore, there is still an urgent need to develop eco-friendly substitutes for CdO. Recently, MAX-phase materials, which combine attractively dual metal and ceramic properties, have shown potential in replacing CdO as a reinforcement for Ag-matrix composites. Moreover, arc erosion is a common cause of the premature failure of low-voltage switches in applications. To aid the further development of MAX-reinforced Ag-matrix-composite contacts, there is a need to understand the mechanism of arc erosion and degradation of the microstructural and mechanical properties of the composites. Nano-indentation is the most common and stable method of evaluating the micromechanical properties of materials. In this study, micro-/nano-indentation tests were performed along the cross-section of Ag/Ti2SnC contacts (from the arc erosion layer to the near arc erosion layer and then to the matrix interior). The gradient variation of the microhardness, nanohardness, modulus, creep behavior, and plastic/elastic depth in different areas was analyzed and contrasted in the direction of the electrical arc erosion. The micromorphology and elemental composition were comprehensively analyzed, and the structural and compositional evolution of the Ti2SnC reinforcement phase and Ag matrix were investigated. The relationship between the gradient structural change and micro-/nano-mechanical properties of the Ag/Ti2SnC composites was analyzed. COMSOL simulations were employed to further demonstrate the physical characteristics of multi-field coupled erosion in the Ag/Ti2SnC composites; based on these analyses, we propose an erosion mechanism for the composites. This study not only provides insights into the intrinsic relationship between the structure and properties of Ag/MAX composites under arc erosion but also paves the way for the future design and development of eco-friendly contact materials for low-voltage switches.

Key wordsAg/Ti2SnC composites    micro/nano-mechanical behavior    microstructural evolution    COMSOL simulation    multi-field coupled erosion
收稿日期: 2022-10-13     
ZTFLH:  TM2  
基金资助:国家自然科学基金项目(52101064);国家自然科学基金项目(52171033);江苏省博士后科研基金项目(2020Z158);先进金属材料绿色加工与表面技术重点实验室开放项目(GFST2020KF04)
通讯作者: 丁健翔,jxding@ahut.edu.cn,主要从事MAX相、MXene及其在金属基复合电功能材料中的开发和应用研究
张培根,zhpeigen@seu.edu.cn,主要从事MAX相及其A位金属晶须生长现象、机理和抑制策略研究
Corresponding author: DING Jianxiang, associate professor, Tel: 18255504831, E-mail: jxding@ahut.edu.cn;
ZHANG Peigen, associate professor, Tel: 18251951269, E-mail: zhpeigen@seu.edu.cn
作者简介: 丁宽宽,男,1997年生,硕士生
图1  显微压痕和纳米压痕实验示意图
图2  Ag/x%Ti2SnC (x = 10、12、15)电触头的OM像、质量损失和侵蚀面积占比
图3  Ag/x%Ti2SnC电触头基体内部(区域α)到近电弧侵蚀层(区域β) Vikers硬度压痕OM像
Samplea1a2b1b2
Ag/10%Ti2SnC52.477.444.769.1
Ag/12%Ti2SnC63.784.148.174.7
Ag/15%Ti2SnC75.095.158.982.6
表1  区域α 和区域β的Vikers显微硬度平均值 (HV)
图4  Ag基体和增强相Ti2SnC从区域α到区域β连续Vikers硬度及其拟合曲线
图5  Ag/Ti2SnC断面电弧侵蚀层(区域γ)中Vikers硬度压痕的OM像
Samplea1a2b1b2
Ag/10%Ti2SnC56.9685.137.553.3
Ag/12%Ti2SnC64.3778.344.957.6
Ag/15%Ti2SnC80.91277.955.068.0
表2  区域γ的Vikers显微硬度平均值 (HV)
图6  Ag/x%Ti2SnC电触头在区域γ处黑色聚集物的SEM像和元素构成
图7  电弧侵蚀后Ag/x%Ti2SnC电触头的纳米硬度、模量、界面纳米硬度和界面模量
图8  电弧侵蚀后Ag/x%Ti2SnC电触头区域α和区域β的蠕变曲线
图9  Ag/x%Ti2SnC复合材料载荷-深度曲线的塑性形变占比(ξ)和弹性形变占比(δ)计算示意图
SampleAreahm / nmhf / nmξ / %δ / %
Ag/10%Ti2SnCα776.16645.7583.2016.80
β918.22821.6789.4910.51
Ag/12%Ti2SnCα715.80613.8685.7614.24
β885.66806.8891.108.90
Ag/15%Ti2SnCα702.04625.8489.1510.85
β828.14666.9292.617.39
表3  Ag/x%Ti2SnC复合材料在区域α和区域β的最大压痕深度(hm)、回弹深度(hf)、ξ和δ
图10  电弧侵蚀后Ag/x%Ti2SnC电触头不同区域微观形貌的SEM像
图11  Ag/10%Ti2SnC复合材料中区域α和区域β的SEM像和元素面分布
图12  Ag/x%Ti2SnC复合材料中沿截面从区域α到区域β的Ti / Sn原子比线性拟合和Ag / Sn原子比线性拟合
图13  Ag/10%Ti2SnC复合材料在电弧放电条件下电压场分布、温度场分布、等温线和热膨胀位移的稳态模拟
图14  Ag/Ti2SnC电触头的多场耦合侵蚀机理示意图
1 Pons F, Cherkaoui M, Ilali I, et al. Evolution of the AgCdO contact material surface microstructure with the number of arcs [J]. J. Electron. Mater., 2010, 39: 456
2 Teixeira F D S M, Peres A C D C, Gomes T S, et al. A review on the applicability of life cycle assessment to evaluate the technical and environmental properties of waste electrical and electronic equipment [J]. J. Polym. Environ., 2021, 29: 1333
3 Wang X H, Li G J, Zou J T, et al. Investigation on preparation, microstructure, and properties of AgTiB2 composite [J]. J. Compos. Mater., 2011, 45: 1285
4 Yang R, Liu S H, Cui H, et al. Quasi-continuous network structure greatly improved the anti-arc-erosion capability of Ag/Y2O3 electrical contacts [J]. Materials, 2022, 15: 2450
5 Barsoum M W. The MN + 1 AXN phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog. Solid State Chem., 2000, 28: 201
6 Hu W Q, Huang Z Y, Wang Y B, et al. Layered ternary MAX phases and their MX particulate derivative reinforced metal matrix composite: A review [J]. J. Alloys Compd., 2021, 856: 157313
7 Zhou Y C, Xiang H M, Dai F Z. Y5Si3C and Y3Si2C2: Theoretically predicted MAX phase like damage tolerant ceramics and promising interphase materials for SiCf/SiC composites [J]. J. Mater. Sci. Technol., 2019, 35: 313
8 He H T, Jin S, Fan G X, et al. Synthesis mechanisms and thermal stability of ternary carbide Mo2Ga2C [J]. Ceram. Int., 2018, 44: 22289
9 Sun Z M. Progress in research and development on MAX phases: A family of layered ternary compounds [J]. Int. Mater. Rev., 2011, 56: 143
10 Ding J X, Tian W B, Wang D D, et al. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge [J]. Corros. Sci., 2019, 156: 147
11 Ding J Y, Tian W B, Zhang P G, et al. Arc erosion behavior of Ag/Ti3AlC2 electrical contact materials [J]. J. Alloys Compd., 2018, 740: 669
12 Ding K K, Zhang K G, Ding J X, et al. Effect of Al atomic layer on the wetting behavior, interface structure and electrical contact properties of silver reinforced by Ti3AlC2 ceramic [J]. Ceram. Int., 2022, 48: 190
13 Liu M M, Chen J L, Cui H, et al. Temperature-driven deintercalation and structure evolution of Ag/Ti3AlC2 composites [J]. Ceram. Int., 2018, 44: 18129
14 Sun Z M, Ding J X, Zhang P G, et al. A preparation method for Ti SnC enhanced Ag-based electrical contact material [P]. Chin Pat, CN106119593A, 2016
14 孙正明, 丁健翔, 张培根 等. 一种Ti SnC增强Ag基电触头材料的制备方法 [P]. 中国专利, CN106119593A, 2016
15 Tian Z H, Zhang P G, Liu Y S, et al. Research progress and outlook of metal whisker spontaneous growth on MAX phase substrates [J]. Acta Metall. Sin., 2022, 58: 295
15 田志华, 张培根, 刘玉爽 等. MAX相表面金属晶须自发生长现象的研究现状与展望 [J]. 金属学报, 2022, 58: 295
doi: 10.11900/0412.1961.2021.00119
16 Huang X C, Feng Y, Qian G, et al. Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere [J]. Ceram. Int., 2017, 43: 10601
17 Liu M M, Chen J L, Cui H, et al. Ag/Ti3AlC2 composites with high hardness, high strength and high conductivity [J]. Mater. Lett., 2018, 213: 269
18 Wang D D, Tian W B, Ma A B, et al. Anisotropic properties of Ag/Ti3AlC2 electrical contact materials prepared by equal channel angular pressing [J]. J. Alloys Compd., 2019, 784: 431
19 Zhang M, Tian W B, Zhang P G, et al. Microstructure and properties of Ag-Ti3SiC2 contact materials prepared by pressureless sintering [J]. Int. J. Miner. Metall. Mater., 2018, 25: 810
20 Ding J X, Tian W B, Zhang P G, et al. Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging [J]. J. Adv. Ceram., 2019, 8: 90
21 Ding J X, Huang P Y, Zha Y H, et al. High-purity Ti2AlC powder: Preparation and application in Ag-based electrical contact materials [J]. J. Inorg. Mater., 2020, 35: 729
21 丁健翔, 黄培艳, 查余辉 等. 高纯Ti2AlC粉末的无压制备及其在Ag基电触头材料的应用 [J]. 无机材料学报2020, 35: 729
doi: 10.15541/jim20190243
22 Huang X C, Feng Y, Qian G, et al. Erosion behavior of Ti3AlC2 cathode under atmosphere air arc [J]. J. Alloys Compd., 2017, 727: 419
23 Huang X C, Feng Y, Ge J L, et al. Arc erosion mechanism of Ag-Ti3SiC2 material [J]. J. Alloys Compd., 2020, 817: 152741
24 Ding J X, Tian W B, Wang D D, et al. Arc erosion and degradation mechanism of Ag/Ti2AlC composite [J]. Acta Metall. Sin., 2019, 55: 627
24 丁健翔, 田无边, 汪丹丹 等. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理 [J]. 金属学报, 2019, 55: 627
doi: 10.11900/0412.1961.2018.00534
25 Ding J X, Tian W B, Wang D D, et al. Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging [J]. J. Alloys Compd., 2019, 785: 1086
26 Yılmaz E, Çakıroğlu B, Gökçe A, et al. Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition [J]. Mater. Sci. Eng., 2019, C101: 292
27 Büor B, Giuntini D, Domènech B, et al. Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites [J]. J. Eur. Ceram. Soc., 2019, 39: 3247
28 Hu C L, Yao S, Zou F B, et al. Insights into the influencing factors on the micro-mechanical properties of calcium-silicate-hydrate gel [J]. J. Am. Ceram. Soc., 2019, 102: 1942
29 Zhang J S, Liu X J, Cui H, et al. Mechanical properties around reinforce particles in metal matrix composites characterized by nanoindentation technique [J]. Acta Metall. Sin., 1997, 33: 548
29 张济山, 刘兴江, 崔 华 等. 金属基复合材料相界面区力学性能显微力学探针分析 [J]. 金属学报, 1997, 33: 548
30 Yazdani Z, Toroghinejad M R, Edris H. Effects of annealing on the fabrication of Al-TiAl3 nanocomposites before and after accumulative roll bonding and evaluation of strengthening mechanisms [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 636
31 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
32 Huang C X, Lin W Q, Lai C H, et al. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues [J]. Bioresour. Technol., 2019, 285: 121355
33 Wang X, Guan R G, Shang Y Q, et al. Evolution of bonding interface in Al/Al-Mg-Si alloy clad wire during heating at 500oC [J]. Mater. Sci. Eng., 2017, A679: 538
34 Zhao Y H, Jing J H, Chen L W, et al. Current research status of interface of ceramic-metal laminated composite material for armor protection [J]. Acta Metall. Sin., 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
34 赵宇宏, 景舰辉, 陈利文 等. 装甲防护陶瓷-金属叠层复合材料界面研究进展 [J]. 金属学报, 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
35 Li S B, Bei G P, Chen X D, et al. Crack healing induced electrical and mechanical properties recovery in a Ti2SnC ceramic [J]. J. Eur. Ceram. Soc., 2016, 36: 25
36 Hoyaux M F. Arc Physics [M]. Springer Science & Business Media, 2013: 304
37 Wang J B, Zhang Y, Yang M G, et al. Observation of arc discharging process of nanocomposite Ag-SnO2 and La-doped Ag-SnO2 contact with a high-speed camera [J]. Mater. Sci. Eng., 2006, B131: 230
38 Gu L, Zhu Y M, He G J, et al. Coupled numerical simulation of arc plasma channel evolution and discharge crater formation in arc discharge machining [J]. Int. J. Heat Mass Transfer, 2019, 135: 674
39 Humenik M, Kingery W D. Metal-ceramic interactions: III, Surface tension and wettability of metal-ceramic systems [J]. J. Am. Ceram. Soc., 1954, 37: 18
40 Chen J X, Li J L, Zhou Y C. In-situ synthesis of Ti3AlC2/TiC-Al2O3 composite from TiO2-Al-C system [J]. J. Mater. Sci. Technol., 2006, 22: 455
41 Kumashiro Y, Itoh A, Kinoshita T, et al. The micro-Vickers hardness of TiC single crystals up to 1500oC [J]. J. Mater. Sci., 1977, 12: 595
42 Zhao J H, Liu J, Li N, et al. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study [J]. Chem. Eng. J., 2016, 304: 737
[1] 刘仕, 黄佳玮, 武静. 机器学习势在铁电材料研究中的应用[J]. 金属学报, 2024, 60(10): 1312-1328.
[2] 刘仲武, 周帮, 廖雪峰, 何家毅. 全高丰度稀土(Ce, La, Y)-Fe-B永磁的研究现状和未来发展[J]. 金属学报, 2024, 60(5): 585-604.
[3] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[4] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[5] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[6] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[7] 王少博, 刘丹敏, 肖卫强, 张振路, 岳明, 张久兴. Mn1.2Fe0.8P0.74Ge0.26-xSex化合物磁热性能研究*[J]. 金属学报, 2014, 50(9): 1109-1114.
[8] 张孟 刘丹敏 刘翠秀 黄清镇 王少博 张虎 岳明. Mn1.2Fe0.8P0.76Ge0.24磁制冷材料相变过程与性能关系的研究[J]. 金属学报, 0, 0(0): 0-0.
[9] 刘荣明,岳明,张东涛,刘卫强,张久兴. SmCo5纳米颗粒和纳米薄片的制备、结构和磁性能[J]. 金属学报, 2012, 48(4): 475-479.
[10] 王倩 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47(12): 1605-1610.
[11] 方允樟 许启明 叶慧群 范晓珍 裘剑锋. FeCo基薄带气流中应力退火感生的磁结构[J]. 金属学报, 2011, 47(4): 475-481.
[12] 高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
[13] 包小倩; 孙绪新; 高学绪; 张茂才; 董清飞; 周寿增 . 优化边界结构制备高矫顽力及高热稳定性烧结 Nd-Fe-B 磁体[J]. 金属学报, 2008, 44(7): 871-875 .
[14] 李福安; 松林; 包黎红; 哈斯朝鲁 ; 特古斯; 黄焦宏 . LaFe11.9-xCoxSi1.1B0.2( x=0.7, 0.8, 0.9)的磁热效应[J]. 金属学报, 2008, 44(3): 371-374 .
[15] 冯维存; 李卫; 朱明刚; 韩广兵; 高汝伟 . 3种相分布模型中纳米复合永磁体矫顽力与晶粒尺寸的关系[J]. 金属学报, 2008, 44(1): 8-12 .