Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1678-1690    DOI: 10.11900/0412.1961.2022.00509
  研究论文 本期目录 | 过刊浏览 |
激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟
任松1, 吴家柱1(), 张屹2, 张大斌1, 曹阳1, 尹存宏1
1 贵州大学 机械工程学院 贵阳 550025
2 湖南大学 机械与运载工程学院 长沙 410082
Numerical Simulation on Effects of Spatial Laser Beam Profiles on Heat Transport During Laser Directed Energy Deposition of 316L Stainless Steel
REN Song1, WU Jiazhu1(), ZHANG Yi2, ZHANG Dabin1, CAO Yang1, YIN Cunhong1
1 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
2 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
引用本文:

任松, 吴家柱, 张屹, 张大斌, 曹阳, 尹存宏. 激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟[J]. 金属学报, 2024, 60(12): 1678-1690.
Song REN, Jiazhu WU, Yi ZHANG, Dabin ZHANG, Yang CAO, Cunhong YIN. Numerical Simulation on Effects of Spatial Laser Beam Profiles on Heat Transport During Laser Directed Energy Deposition of 316L Stainless Steel[J]. Acta Metall Sin, 2024, 60(12): 1678-1690.

全文: PDF(3061 KB)   HTML
摘要: 

激光整形是调控微观结构以改善增材制件性能的重要手段,但是激光整形定向能量沉积过程中的基本热输运行为仍需阐明。本工作建立了激光定向能量沉积三维热输运模型,对比研究了Gaussian形态(GP)、超Gaussian形态(SGP1、SGP2)和完全平顶形态(FTP) 4种激光束空域形态对316L不锈钢熔池传热和流体流动特征的影响。结果表明:GP、SGP1、SGP2和FTP下熔池的峰值温度依次降低,凝固界面上的温度梯度从熔池顶部到熔池底部逐渐上升;凝固界面的温度梯度与其到熔池表面光束中心的距离负相关,与凝固界面的法方向和激光扫描方向的夹角正相关;在GP、SGP1、SGP2和FTP作用下,靠近熔池后部的相同凝固界面处的温度梯度依次增大,但熔池底部的温度梯度却依次减小,熔池的平均流速依次减小;4种激光束空域形态下的熔池流动由Marangoni剪切应力主导,传热由Marangoni对流传热和热传导共同主导。

关键词 激光定向能量沉积空域形态316L不锈钢热输运数值模拟    
Abstract

The distribution characteristics and magnitude of energy density on the cross section of a laser beam are determined by its spatial profile, which directly impacts heat transport during laser material processing. Hence, it is essential to understand the influence of spatial profiles on heat transport during laser directed energy deposition with synchronous material delivery. Herein, a three-dimensional heat transport model that takes into account important physical events such as laser-powder-pool coupling, thermal-fluid coupling, solid-liquid phase change, and multiple heat transfer was established. The model was validated using single-track single-layer deposition experiments. The effects of four spatial laser beam profiles, including Gaussian (GP), super-Gaussian (SGP1 and SGP2), and pure flat-topped (FTP) profiles, on the heat transport and fluid flow within the molten pool were investigated. Simulated results show that peak temperatures of the molten pool decrease sequentially under GP, SGP1, SGP2 and FTP, and the temperature gradients on the solidification interface increase gradually from the top to the bottom of the molten pool. Temperature gradients on the solidification interface positively correlate with the angle between the normal direction of the solidification interface and the laser scanning direction, and negatively correlate with the distances from the beam center on the molten pool surface. Under all four spatial laser beam profiles, temperature gradients at the same positions on the solidification interface near the rear of the molten pool increase, while those at the bottom of the molten pool decrease. The molten pool exhibits an outward annular flow pattern under all four spatial laser beam profiles with fluid flows mainly driven by Marangoni shear stress. Heat transfer within the molten pool is dominated by Marangoni convection and heat conduction. Average fluid velocities within the molten pool decrease successively according to the following order: Gaussian, super-Gaussian, and pure flat-topped profiles.

Key wordslaser directed energy deposition    spatial profile    316L stainless steel    heat transport    numerical simulation
收稿日期: 2022-10-12     
ZTFLH:  TG142.3  
基金资助:国家自然科学基金项目(51975205);贵州省科学技术基金项目([2021]265);贵州省科学技术基金项目([2023]017);贵州大学自然科学基金项目((2021)15);贵州大学研究生创新人才计划项目(202203)
通讯作者: 吴家柱,wujz_pillar@163.com,主要从事高性能激光制造研究
Corresponding author: WU Jiazhu, associate professor, Tel: (0851)83627516, E-mail: wujz_pillar@163.com
作者简介: 任 松,男,1999年生,硕士生
图1  激光定向能量沉积原理的示意图
图2  不同空域形态因子(K)下的激光束空间密度分布示意图
图3  同轴粉末束的坐标系示意图
图4  数值模型的网格划分
Physical parameterValueUnitRef.
Solidus temperature Tsol1648K
Liquidus temperature Tliq1673K
Solid specific heat csol604J·kg-1·K-1
Liquid specific heat cliq824J·kg-1·K-1
Solid thermal conductivity ksol25W·m-1·K-1
Liquid thermal conductivity kliq36W·m-1·K-1
Room temperature Tref293.15K
Solid density ρsol8000kg·m-3
Liquid density ρliq6893kg·m-3
Emissivity ε0.7[26]
Laser absorptivity η0.38
Latent heat of fusion L2.5 × 105J·kg-1[29]
Convective heat transfer coefficient hcon80W·m-2·K-1[30]
Thermal expansion coefficients αexp5.85 × 10-5K-1[31]
Dynamic viscosity μ6 × 10-3kg·m-1·s-1[32]
Permittivity of vacuum σ'5.67 × 10-8W·m-2·K-4
表1  传热模型的参数值
Physical moduleBoundary
Top surfaceOther sectional surface
Heat transferTref=293.15 K Tref=293.15 K 
Fluid flowu0=0u0=0
P0=0P0=0
Moving meshVL/G0=0dx, dy, dz=0
表2  模拟中的初始值
图5  定向能量沉积实验平台
Process parameterValueUnit
Laser power P600, 700, 800W
Scanning speed v600mm·min-1
Powder feeding rate m10.2g·min-1
Powder radius of molten pool surface Rc4mm

Equivalent radius of

laser beam rb

1.2mm
Laser defocusing amount d8mm
表3  沉积工艺参数
图6  超Gaussian形态(SGP1,K = 4.2)作用下不同功率时沉积道形貌的数值模拟结果与实验结果
Laser power / WResultDeposition track width / mm

Deposition

depth / mm

Deposition

height / mm

600Experiment2129.08281.86194.90
Numerical simulation2102.37256.37173.56
Relative error1.25%9.04%10.95%
700Experiment2365.13356.83218.89
Numerical simulation2239.64330.61210.52
Relative error5.33%7.35%3.82%
800Experiment2509.46428.59248.83
Numerical simulation2544.80382.74234.36
Relative error1.39%10.70%5.82%
表4  超Gaussian形态(SGP1,K = 4.2)作用下不同功率时的熔池形貌特征参数
图7  4种激光束空域形态下熔池的温度场
图8  4种激光束空域形态下图4中轨迹1的温度分布
图9  Gaussian形态(GP)下熔池纵向切片的温度梯度
图10  GP下2个纵向切面上的温度梯度分布
图11  4种激光束空域形态作用下2个切面凝固界线上考察点的温度梯度
图12  4种激光束空域形态作用下切面凝固界线上考察点到熔池表面光束中心的距离
图13  4种激光束空域形态作用下激光扫描方向与切面凝固界线上考察点处法线方向的夹角
图14  4种激光束空域形态下熔池的速度场
图15  4种激光束空域形态下图4中轨迹1的流速分布
1 Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chin. J. Lasers, 2020, 47: 0500002
1 顾冬冬, 张红梅, 陈洪宇 等. 航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47: 0500002
2 Li D C, He J K, Tian X Y, et al. Additive manufacturing: Integrated fabrication of macro/microstructures [J]. J. Mech. Eng., 2013, 49(6): 129
2 李涤尘, 贺健康, 田小永 等. 增材制造: 实现宏微结构一体化制造 [J]. 机械工程学报, 2013, 49(6): 129
3 Gong G H, Ye J J, Chi Y M, et al. Research status of laser additive manufacturing for metal: A review [J]. J. Mater. Res. Technol., 2021, 15: 855
4 Roehling T T, Wu S S Q, Khairallah S A, et al. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing [J]. Acta Mater., 2017, 128: 197
5 Tumkur T U, Voisin T, Shi R P, et al. Nondiffractive beam shaping for enhanced optothermal control in metal additive manufacturing [J]. Sci. Adv., 2021, 7: eabg9358
6 Kubiak M, Piekarska W, Stano S. Modelling of laser beam heat source based on experimental research of Yb:YAG laser power distribution [J]. Int. J. Heat Mass Transfer, 2015, 83: 679
7 Sundqvist J, Kaplan A F H, Shachaf L, et al. Analytical heat conduction modelling for shaped laser beams [J]. J. Mater. Process. Technol., 2017, 247: 48
8 Ya W, Pathiraj B, Liu S J. 2D modelling of clad geometry and resulting thermal cycles during laser cladding [J]. J. Mater. Process. Technol., 2016, 230: 217
9 Song M J, Wu L S, Liu J M, et al. Effects of laser cladding on crack resistance improvement for aluminum alloy used in aircraft skin [J]. Opt. Laser Technol., 2021, 133: 106531
10 Gao W Y, Zhao S S, Wang Y B, et al. Numerical simulation of thermal field and Fe-based coating doped Ti [J]. Int. J. Heat Mass Transfer, 2016, 92: 83
11 Manvatkar V, De A, DebRoy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing [J]. J. Appl. Phys., 2014, 116: 124905
12 Li C, Zhang D C, Gao X, et al. Numerical simulation method of the multi-field coupling mechanism for laser cladding 316L powder [J]. Weld. World, 2022, 66: 423
13 Wang L P, Zhang D C, Chen C Z, et al. Multi-physics field coupling and microstructure numerical simulation of laser cladding for engine crankshaft based on CA-FE method and experimental study [J]. Surf. Coat. Technol., 2022, 438: 128396
14 He X, Mazumder J. Transport phenomena during direct metal deposition [J]. J. Appl. Phys., 2007, 101: 053113
15 Qi H, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition [J]. J. Appl. Phys., 2006, 100: 024903
16 Wirth F, Wegener K. A physical modeling and predictive simulation of the laser cladding process [J]. Addit. Manuf., 2018, 22: 307
17 Li C, Yu Z B, Gao J X, et al. Numerical simulation and experimental study of cladding Fe60 on an ASTM 1045 substrate by laser cladding [J]. Surf. Coat. Technol., 2019, 357: 965
18 Gan Z T, Yu G, He X L, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel [J]. Int. J. Heat Mass Transfer, 2017, 104: 28
19 Zhang T, Li H, Liu S, et al. Evolution of molten pool during selective laser melting of Ti-6Al-4V [J]. J. Phys., 2019, 52D: 055302
20 Han L, Phatak K M, Liou F W. Modeling of laser cladding with powder injection [J]. Metall. Mater. Trans., 2004, 35B: 11390
21 Tovar A A. Propagation of flat-topped multi-Gaussian laser beams [J]. J. Opt. Soc. Am., 2001, 18A: 18974
22 Kaplan A F H. Analysis and modeling of a high-power Yb:fiber laser beam profile [J]. Opt. Eng., 2011, 50: 054201
23 Wu J Z, Zhao P H, Wei H Y, et al. Development of powder distribution model of discontinuous coaxial powder stream in laser direct metal deposition [J]. Powder Technol., 2018, 340: 449
24 Wu J Z, Liu T W, Chen H Y, et al. Simulation of laser attenuation and heat transport during direct metal deposition considering beam profile [J]. J. Mater. Process. Technol., 2019, 270: 92
25 Wu J Z, Ren S, Zhang Y, et al. Influence of spatial laser beam profiles on thermal-fluid transport during laser-based directed energy deposition [J]. Virtual Phys. Prototy., 2021, 16: 444
26 Gan Z T, Yu G, He X L, et al. Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing [J]. Int. Commun. Heat Mass Transfer, 2017, 86: 206
27 He X L, Song L J, Yu G, et al. Solute transport and composition profile during direct metal deposition with coaxial powder injection [J]. Appl. Surf. Sci., 2011, 258: 898
28 Morville S, Carin M, Peyre P, et al. 2D longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process [J]. J. Laser Appl., 2012, 24: 032008
29 Wen S Y, Shin Y C. Modeling of transport phenomena during the coaxial laser direct deposition process [J]. J. Appl. Phys., 2010, 108: 044908
30 Ai Y W, Jiang P, Shao X Y, et al. A three-dimensional numerical simulation model for weld characteristics analysis in fiber laser keyhole welding [J]. Int. J. Heat Mass Transfer, 2017, 108: 614
31 Knapp G L, Mukherjee T, Zuback J S, et al. Building blocks for a digital twin of additive manufacturing [J]. Acta Mater., 2017, 135: 390
32 Wu J Z, Zheng X Q, Zhang Y, et al. Modeling of whole-phase heat transport in laser-based directed energy deposition with multichannel coaxial powder feeding [J]. Addit. Manuf., 2022, 59: 103161
33 Promoppatum P, Yao S C, Pistorius P C, et al. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion [J]. Engineering, 2017, 3: 685
34 Wei H L, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components [J]. Prog. Mater. Sci., 2021, 116: 100703
35 Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
[1] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[2] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[3] 郭杰, 黄立清, 吴京洋, 李俊杰, 王锦程, 樊凯. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 60(11): 1531-1544.
[4] 蒋华臻, 彭爽, 胡琦芸, 王光义, 陈启生, 李正阳, 孙辉磊, 房佳汇钰. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能[J]. 金属学报, 2024, 60(11): 1512-1530.
[5] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[6] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[9] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[10] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[11] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[12] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[13] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[14] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[15] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.