Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1093-1108    DOI: 10.11900/0412.1961.2023.00432
  研究论文 本期目录 | 过刊浏览 |
Al2O3 涂层对硅基陶瓷型芯与镍基单晶高温合金界面反应的影响
何家宝1,2, 王亮1, 张朝威1, 邹明科1, 孟杰1(), 王新广1, 姜肃猛1, 周亦胄1(), 孙晓峰1
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of Al2O3 Coating on Interface Reaction Between Si-Based Ceramic Core and Ni-Based Single-Crystal Superalloy
HE Jiabao1,2, WANG Liang1, ZHANG Chaowei1, ZOU Mingke1, MENG Jie1(), WANG Xinguang1, JIANG Sumeng1, ZHOU Yizhou1(), SUN Xiaofeng1
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

何家宝, 王亮, 张朝威, 邹明科, 孟杰, 王新广, 姜肃猛, 周亦胄, 孙晓峰. Al2O3 涂层对硅基陶瓷型芯与镍基单晶高温合金界面反应的影响[J]. 金属学报, 2025, 61(7): 1093-1108.
Jiabao HE, Liang WANG, Chaowei ZHANG, Mingke ZOU, Jie MENG, Xinguang WANG, Sumeng JIANG, Yizhou ZHOU, Xiaofeng SUN. Effect of Al2O3 Coating on Interface Reaction Between Si-Based Ceramic Core and Ni-Based Single-Crystal Superalloy[J]. Acta Metall Sin, 2025, 61(7): 1093-1108.

全文: PDF(7613 KB)   HTML
摘要: 

为了抑制浇注叶片时合金液与硅基陶瓷型芯的界面反应,从而提高叶片内腔的表面质量,本工作采用原位座滴法研究了多弧离子镀沉积Al2O3涂层对硅基陶瓷型芯与镍基单晶高温合金界面反应及润湿性的影响。利用光学轮廓测量仪、SEM和XRD分别对界面反应后合金与陶瓷的表面质量、形貌、元素分布、反应产物进行了分析。结果表明,施加Al2O3涂层的硅基陶瓷型芯与合金熔体在高温下接触后,只在合金底部少数区域形成了Al2O3及硅化物;而未表面改性的硅基陶瓷型芯与合金熔体接触后,在合金底部形成了连续、致密的Al2O3反应层,且基本覆盖合金底部。合金熔体在施加Al2O3涂层的硅基陶瓷型芯上的润湿角为89.1°,优于在未表面改性的硅基陶瓷型芯上的100.4°,润湿性显著提高。

关键词 Al2O3涂层硅基陶瓷型芯镍基单晶高温合金界面反应润湿性    
Abstract

Ni-based single-crystal superalloys weaken or even eliminate the influence of weak grain boundaries at high temperatures and contain 60% (volume fraction) of L12-type coherent ordering γ'- Ni3(Al, Ti) precipitation strengthening phase. These superalloys exhibit excellent properties at high temperatures such as, high resistance to oxidation, creep, and fatigue resistance, making them the preferred materials for manufacturing advanced aviation engine turbine blades. The inner cavity structure of engine turbine blades has become complex with the rapid development of the engine manufacturing industry, making investment casting technology as a key technology in blade production. Si-based ceramics are selected as core materials owing to their low thermal expansion coefficient, good dimensional stability, and easy solubility. However, during pouring, active elements such as Hf, Al, and Cr, in the superalloy liquid, undergo thermo-physicochemical and thermomechanical infiltration with the cores when they come in contact with Si-based ceramic cores for extended period at high temperatures. This results in interface reactions and sand formation on the casting surface, thereby reducing the quality of the blade's inner surface and increasing subsequent processes such as eliminating the reaction layer through certain chemical methods. To suppress the interface reaction between the superalloy liquid and Si-based ceramic cores during blade casting and improve the surface quality of the blade inner cavity, the effect of Al2O3 coating on the surface of Si-based ceramic cores were investigated using the multi-arc ion plating method. Furthermore, the effect of Al2O3 coating on the interface reaction and wettability between Si-based ceramic cores and the superalloy were explored using the in situ droplet method. The surface quality, morphology, element distribution, and reaction products of the interface reaction were analyzed via optical profilometry, SEM, and XRD, respectively. It has been found Al2O3 and silicides are generated in few areas at the bottom of the superalloy after high-temperature contact between the Al2O3-coated Si-based ceramic cores and superalloy melt. However, a continuous and dense Al2O3 reaction layer is formed at the bottom of the superalloy after contact between the unmodified Si-based ceramic cores and superalloy melt. The wetting angles of the superalloy melt on the Al2O3-coated and unmodified Si-based ceramic cores are 89.1° and 100.4°, respectively, indicating that the wettability is substantially improved by the Al2O3 coating. Results indicate that applying Al2O3 coating on Si-based ceramic cores can effectively suppress the interface reaction between Ni-based single-crystal superalloy and Si-based ceramic cores and improve the filling ability of the superalloy liquid during casting.

Key wordsAl2O3 coating    Si-based ceramic core    Ni-based single-crystal superalloy    interface reaction    wettability
收稿日期: 2023-10-30     
ZTFLH:  TG245  
基金资助:国家重点研发计划项目(2017YFA0700704);国家重点研发计划项目(2019YFA0705300);四川省科技计划项目(省院省校合作项目)(2022YFSY0016);辽宁省优秀青年基金项目(2021-YQ-02)
通讯作者: 孟 杰,jmeng@imr.ac.cn,主要从事镍基单晶高温合金的研究
周亦胄,yzzhou@imr.ac.cn,主要从事镍基单晶高温合金的研究
作者简介: 何家宝,男,1999年生,硕士生
图1  镍基单晶高温合金与2种硅基陶瓷型芯反应后的形貌及润湿角测量方法示意图
图2  施加Al2O3涂层的硅基陶瓷型芯的形貌及EDS元素面分布
图3  施加Al2O3涂层的硅基陶瓷型芯表面的XRD谱
图4  施加Al2O3涂层的硅基陶瓷型芯的表面粗糙度
图5  与施加Al2O3涂层的硅基陶瓷型芯反应后合金底部的粗糙度
图6  镍基单晶高温合金与施加Al2O3涂层的硅基陶瓷型芯反应后合金底部微观形貌SEM像及EDS元素面分布
PointAlONiHfSiCoCrReMoWTaZr
166.2721.247.780.760.111.470.650.510.390.120.600.10
218.7122.0114.4933.372.210.211.421.155.980.46
30.860.5728.080.725.9011.770.874.2729.979.447.310.24
表1  图6b中点1~3的EDS结果 (mass fraction / %)
图7  镍基单晶高温合金与施加Al2O3涂层的硅基陶瓷型芯反应后合金纵截面的微观形貌及EDS元素面分布
PointAlONiSiCoCrReMoWTaHfC
10.620.5820.052.247.770.6223.243.7124.766.853.845.73
20.140.519.100.602.830.4039.4134.584.063.584.81
表2  图7b中点1和2的EDS结果 (mass fraction / %)
图8  施加Al2O3涂层的硅基陶瓷型芯与镍基单晶高温合金反应后型芯表面的微观形貌及EDS元素面分布
PointAlOHfSiZr
155.6841.621.840.380.48
217.2718.3663.580.700.09
表3  图8b中点1和2的EDS结果 (mass fraction / %)
图9  界面反应后镍基单晶高温合金底部和施加Al2O3涂层的硅基陶瓷型芯表面的XRD谱
图10  未表面改性的硅基陶瓷型芯的表面形貌及EDS元素面分布
图11  未表面改性的硅基陶瓷型芯的表面粗糙度
图12  与未表面改性的硅基陶瓷型芯反应后镍基单晶高温合金底部的粗糙度
图13  镍基单晶高温合金与未表面改性的硅基陶瓷型芯反应后合金底部的微观形貌及EDS元素面分布
图14  镍基单晶高温合金与未表面改性的硅基陶瓷型芯反应后合金纵截面的微观形貌及EDS元素面分布
图15  未表面改性的硅基陶瓷型芯与镍基单晶高温合金反应后硅基陶瓷型芯表面形貌SEM像及EDS元素面分布
图16  界面反应后镍基单晶高温合金底部和未表面改性的硅基陶瓷型芯表面的XRD谱
Systemd / mmh / mmθ / (o)
Superalloy-Al2O3-coated Si-based ceramic core6.13.089.1
Superalloy-unmodified Si-based ceramic core5.03.0100.4
表4  合金/不同硅基陶瓷体系的润湿角

Element

(compound)

H298θ

kJ‧mol-1

S298θ

J‧mol-1

cpT=A+B×10-3T+C×105 T-2+D×10-6T2

J‧mol-1‧K-1

T
K
ABCD
Hf043.5623.4607.62300298-2013
SiO2-908.3543.4071.6261.891-39.0580298-2000
HfO2-1113.2059.3672.1119.050-12.9410298-1973
Si018.8222.8248.238-2.06301685-1973
Al028.3231.748000933-2767
Al2O3-1675.2750.94120.5169.192-48.3670800-2327
表5  计算所需的热力学参数[21]
图17  合金-施加Al2O3涂层的硅基陶瓷型芯体系的界面反应示意图
图18  合金-未表面改性的硅基陶瓷型芯体系的界面反应示意图
1 Wang Y Q. Preparation and properties of silica-based ceramic core [D]. Xi'an: Northwestern Polytechnical University, 2005
1 王毅强. 硅基陶瓷型芯制备与性能分析 [D]. 西安: 西北工业大学, 2005
2 Gui Z L, Zhang X H, Zhong Z G, et al. Development of manufacturing technology for single crystal turbine blades and vanes with high cooling effect [J]. Aviat. Maint. Eng., 1998, (2): 11
2 桂忠楼, 张鑫华, 钟振纲 等. 高效冷却单晶涡轮叶片制造技术的发展 [J]. 航空制造工程, 1998, (2): 11
3 Sriramamurthy A M, Das N, Singh S. Development of investment shell moulds for precision casting of gas turbine aerofoils [J]. Met. Mater. Process., 2007, 19: 203
4 Yan J H. Preparation of Al2O3 matrix coating on silica based ceramic core and its effects on interface reaction [D]. Tianjin: Tianjin University, 2018
4 闫军浩. 硅基陶瓷型芯Al2O3基涂层的制备及其在界面反应上的作用 [D]. 天津: 天津大学, 2018
5 Burd L, Robb R R, Yaker C. Ceramic cores for manufacturing hollow metal castings [P]. US Pat, 4190450 A, 1980
6 Chen X Y, Zhou Y Z, Zhang C W, et al. Effect of Hf on the interfacial reaction between a Nickel base superalloy and a ceramic material [J]. Acta Metall. Sin., 2014, 50: 1019
doi: 10.11900/0412.1961.2014.00033
6 陈晓燕, 周亦胄, 张朝威 等. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响 [J]. 金属学报, 2014, 50: 1019
doi: 10.11900/0412.1961.2014.00033
7 Chen X Y, Jin Z, Bai X F, et al. Effect of C on the interfacial reaction and wettability between a Ni-based superalloy and ceramic mould [J]. Acta Metall. Sin., 2015, 51: 853
doi: 10.11900/0412.1961.2015.00007
7 陈晓燕, 金 喆, 白雪峰 等. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响 [J]. 金属学报, 2015, 51: 853
8 Wang L L, Li J R, Tang D Z, et al. Interfacial reactions between SiO2-ZrO2 ceramic core and DZ125, DD5, DD6 casting superalloys [J]. J. Mater. Eng., 2016, 44(3): 9
doi: 10.11868/j.issn.1001-4381.2016.03.002
8 王丽丽, 李嘉荣, 唐定中 等. SiO2-ZrO2陶瓷型芯与DZ125, DD5和DD6三种铸造高温合金的界面反应 [J]. 材料工程, 2016, 44(3): 9
doi: 10.11868/j.issn.1001-4381.2016.03.002
9 Valenza F, Muolo M L, Passerone A. Wetting and interactions of Ni- and Co-based superalloys with different ceramic materials [J]. J. Mater. Sci., 2010, 45: 2071
10 Halberstadt K. Process of making a hollow member having an internal coating [P]. DE Pat, 1593445, 2007
11 Wang X N, Jing C B, Zhao X J. Study on compact α-Al2O3 coating fabricated by sol-gel method [J]. Mater. Sci. Technol., 2005, 13: 1
11 王喜娜, 敬承斌, 赵修建. 溶胶-凝胶法制备致密α-Al2O3涂层的研究 [J]. 材料科学与工艺, 2005, 13: 1
12 Zhang Q J, Zhang J H, Li M, et al. Study of modification of Al2O3-coated engineering ceramics by sol-gel process [J]. J. Chin. Ceram. Soc., 2001, 29: 416
12 张勤俭, 张建华, 李 敏 等. 用溶胶-凝胶法制备Al2O3涂层工程陶瓷的表面改性研究 [J]. 硅酸盐学报, 2001, 29: 416
13 Pan Z P, Guo J Z, Li S M, et al. Properties of alumina coatings prepared on silica-based ceramic substrate by plasma spraying and sol-gel dipping methods [J]. Ceram. Int., 2021, 47: 27453
14 Yang Z G, Yin Z Q, Shi Y, et al. Microstructure and bending strength improvement of alumina-based ceramic cores by liquid silicone resin infiltration [J]. Mater. Chem. Phys., 2020, 239: 122041
15 Wu H H, Li D C, Tang Y P, et al. Improving high temperature properties of alumina based ceramic cores containing yttria by vacuum impregnating [J]. Mater. Sci. Technol., 2011, 27: 823
16 Jiang X F, Liu Q C, Wang H B. Technology and application of multi-arc ion plating [J]. J. Chongqing Univ. (Nat. Sci. Ed.), 2006, 29(10): 55
16 姜雪峰, 刘清才, 王海波. 多弧离子镀技术及其应用 [J]. 重庆大学学报(自然科学版), 2006, 10(10): 55
17 Cui R J, Huang Z H, Guan K, et al. Effect of heat treatment on microstructure and properties of second generation Ni-based single crystal superalloys DD5 [J]. Trans. Mater. Heat Treat., 2019, 40(6): 45
17 崔仁杰, 黄朝晖, 管 凯 等. 热处理工艺对第二代镍基单晶高温合金DD5组织和性能的影响 [J]. 材料热处理学报, 2019, 40(6): 45
doi: 10.13289/j.issn.1009-6264.2019-0094
18 Zhang Y J, Xuan W D, Ren Z M, et al. Simulation of effect of heating condition on microstructure and properties of silicon-based ceramic core [J]. Shanghai Met., 2021, 43(6): 65
18 张雅君, 玄伟东, 任忠鸣 等. 模拟受热状况对硅基陶瓷型芯组织和性能的影响 [J]. 上海金属, 2021, 43(6): 65
19 Zi Y. Effects of Re and Y elementson interface reactions between superalloy melts and ceramic materials [D]. Hefei: University of Science and Technology of China, 2020
19 訾赟. Re和Y元素对高温合金熔体与陶瓷材料界面反应的影响 [D]. 合肥: 中国科学技术大学, 2020
20 Liang Y J, Che Y C. Handbook of Thermochemical Data of Inorganic Compounds [M]. Shenyang: Northeastern University Press, 1993: 19
20 梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993: 19
21 Ye D H, Hu J H. Handbook of Thermodynamic Data of Inorganic Compounds [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2002: 72
21 叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 第 2版, 北京: 冶金工业出版社, 2002: 72
22 Zheng Y R, Li C G. Skin Effect of Hf-rich melts and some aspects in its usage for Hf-containing cast nickel-base superalloys [A]. Superalloys 1988 [C]. Warrendale: TMS, 1988: 475
23 Xue M. Study on Ceramic-superalloy interface reactions during the directional solidification processing [D]. Beijing: Tsinghua University, 2007
23 薛 明. 定向凝固过程中陶瓷与高温合金界面研究 [D]. 北京: 清华大学, 2007
24 Chen X, Zheng W L, Zhang J, et al. Enhanced thermal properties of silica-based ceramic cores prepared by coating alumina/mullite on the surface of fused silica powders [J]. Ceram. Int., 2020, 46: 11819
25 Laurent V, Chatain D, Eustathopoulos N. Wettability of SiO2 and oxidized SiC by aluminium [J]. Mater. Sci. Eng., 1991, A135: 89
[1] 李永梅, 谭子昊, 王新广, 陶稀鹏, 杨彦红, 刘纪德, 刘金来, 李金国, 周亦胄, 孙晓峰. 一种低成本第三代单晶高温合金的高温氧化行为[J]. 金属学报, 2025, 61(7): 1049-1059.
[2] 许增光, 周士祺, 李晓, 刘志权. (111)取向纳米孪晶Cu的抗氧化性能及焊料润湿性[J]. 金属学报, 2024, 60(7): 957-967.
[3] 刘静, 张思倩, 王栋, 王莉, 陈立佳. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响[J]. 金属学报, 2024, 60(2): 179-188.
[4] 张振武, 李继康, 许文贺, 沈沐宇, 戚磊一, 郑可盈, 李伟, 魏青松. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响[J]. 金属学报, 2024, 60(11): 1471-1486.
[5] 刘悦, 姚文轩, 刘大晖, 丁琳, 杨正伟, 刘微, 于涛, 施思齐. 高质量文本数据驱动的命名实体识别加速镍基单晶高温合金材料知识发现[J]. 金属学报, 2024, 60(10): 1429-1438.
[6] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[8] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[10] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[11] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[12] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[13] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[14] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[15] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.