Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 929-940    DOI: 10.11900/0412.1961.2023.00203
  研究论文 本期目录 | 过刊浏览 |
Cr耐蚀钢筋在模拟高碱性混凝土孔隙液中的钝化行为
王慕亮1,2, 孙玉朋1,2, 陈磊1,2, 魏洁2(), 董俊华2()
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Passive Behavior of Corrosion-Resistant Cr-Containing Steel Bars in Simulated High-Alkaline Concrete Pore Solution
WANG Muliang1,2, SUN Yupeng1,2, CHEN Lei1,2, WEI Jie2(), DONG Junhua2()
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王慕亮, 孙玉朋, 陈磊, 魏洁, 董俊华. 含Cr耐蚀钢筋在模拟高碱性混凝土孔隙液中的钝化行为[J]. 金属学报, 2025, 61(6): 929-940.
Muliang WANG, Yupeng SUN, Lei CHEN, Jie WEI, Junhua DONG. Passive Behavior of Corrosion-Resistant Cr-Containing Steel Bars in Simulated High-Alkaline Concrete Pore Solution[J]. Acta Metall Sin, 2025, 61(6): 929-940.

全文: PDF(3363 KB)   HTML
摘要: 

针对不同Cr含量(0、3%和9%,质量分数)的耐蚀钢筋(20MnSi钢、3Cr钢和9Cr钢)在模拟高碱性混凝土孔隙液中的钝化行为,采用电化学测试技术(开路电位、EIS抗谱、极化曲线以及Mott-Schottky曲线)研究了钢筋表面钝化膜性能随时间的变化特征,并通过XPS对钝化膜成分与结构进行了分析。结果表明,在模拟高碱性混凝土孔隙液中,钢筋表面会生成层状结构钝化膜,钝化膜的结构、组成及保护性与钢筋中Cr元素含量和钝化时间密切相关。20MnSi钢钝化膜的外层主要为Fe(Ⅲ)化合物,内层主要为Fe(Ⅱ)氧化物;3Cr钢和9Cr钢钝化膜的外层由Fe(Ⅲ)和Cr(Ⅲ)的氧化物和氢氧化物组成,内层由Fe(Ⅱ)氧化物和Cr(Ⅲ)的化合物组成。3种钢筋形成的钝化膜在-0.8~0.2 V (vs SCE)电位区间内表现为n型半导体,且随浸泡时间增加,钝化膜中缺陷减少,钢的腐蚀电流密度减小,耐腐蚀性能有所提高。Cr含量越高,相同时间形成的钝化膜点缺陷密度越低,钝化膜越致密,钢筋耐腐蚀性能越好。

关键词 耐蚀钢筋混凝土模拟液钝化膜电化学测试    
Abstract

Reinforced concrete has become the preferred choice for modern building structures owing to its long durability, strong structure, flexible, and diverse designs, wide availability, and low cost. Traditional carbon steel bars are prone to corrosion in marine environments, resulting in problems such as steel bar breakage and concrete cracks, thereby affecting the safety and reliability of marine engineering structures. Therefore, using high-performance corrosion-resistant alloy steel bars can effectively solve the problem of steel corrosion in marine engineering and improve the durability and maintainability of engineering structures. Concrete is a highly alkaline environment when it is free from erosion, and the pH value of its pore solution is 12.5-13.6. When steel bars are exposed to this environment, a stable passive film forms on their surface. This spontaneously formed passive film can keep the steel bars in a passive state, preventing corrosion and considerably extending the service life of reinforced concrete structures. The differences in the composition and structure of the passive film on steel bars represent important reasons for the different corrosion resistance performances of steel bars in concrete. To study the passive behavior of corrosion-resistant rebars (20MnSi steel, 3Cr steel, and 9Cr steel) with different Cr contents (0, 3%, and 9%, mass fraction) in simulated high-alkaline concrete pore solution, electrochemical measurements (including open circuit potential, electrochemical impedance spectroscopy, polarization curve, and Mott-Schottky curve) were used to study the changes in the properties of the passive film on the surface of the rebars over time. XPS was used to analyze the composition and structure of the passive film. The results show that a passive layered film was formed on the surface of the rebars in the simulated high-alkaline concrete pore solution, and the structure, composition, and protective properties of the passive film were closely related to the Cr content and passivation time of the rebars. The passive film of 20MnSi steel was mainly composed of Fe(III) compounds in the outer layer and Fe(II) oxides in the inner layer. The outer layer of the passive film of 3Cr steel and 9Cr steel comprised Fe(III) and Cr(III) oxides and hydroxides, and the inner layer comprised Fe(II) oxides and Cr(III) compounds. The passive films formed by the three types of rebars exhibited n-type semiconductor properties within the potential range of -0.8 to 0.2 V (vs SCE). As the immersion time increased, the defect density in the passive film decreased, leading to decreased corrosion current density of the rebars and improved corrosion resistance. When the Cr content is increased, the point defect density of the passive film decreases. At the same time, the passive film becomes dense, resulting in improved corrosion resistance of the rebars.

Key wordscorrosion-resistant steel bar    concrete simulating solution    passive film    electrochemical test
收稿日期: 2023-05-06     
ZTFLH:  TG174  
基金资助:辽宁省科技重大专项项目(2020JH1/10100001)
通讯作者: 魏 洁,jwei@imr.ac.cn,主要从事混凝土结构中钢筋的腐蚀与防护研究;
董俊华,jhdong@imr.ac.cn,主要从事耐蚀材料的电化学设计及腐蚀监检测研究
Corresponding author: WEI Jie, associate professor, Tel: 13478204310, E-mail: jwei@imr.ac.cn;
DONG Junhua, professor, Tel: 13842056525, E-mail: jhdong@imr.ac.cn
作者简介: 王慕亮,男,1998年生,硕士
SteelCMnSiCrFe
20MnSi0.211.60.80Bal.
3Cr0.211.60.83Bal.
9Cr0.211.60.89Bal.
表1  20MnSi、3Cr和9Cr钢的名义成分 (mass fraction / %)
图1  热处理后3种钢筋显微组织的SEM像
图2  20MnSi、3Cr和9Cr钢在模拟混凝土孔隙液中开路电位随浸泡时间的变化
图3  20MnSi、3Cr和9Cr钢在模拟混凝土溶液中浸泡不同时间后的极化曲线(a) 20MnSi steel (b) 3Cr steel (c) 9Cr steel
图4  20MnSi、3Cr和9Cr钢在模拟混凝土溶液中浸泡不同时间后的腐蚀电流密度
图5  20MnSi、3Cr和9Cr钢在模拟液中浸泡不同时间后EIS结果
图6  用于EIS数据拟合等效电路
Steel

Time

h

Rs

Ω·cm2

Qc-Y0

10-3 Ω-1·cm2·S-n

nc

Rc

Ω·cm2

Qa-Y0

10-3 Ω-1·cm2·S-n

na

Ra

Ω·cm2

χ2
20MnSi0.53.660.260.9419940.1800.84285301.71 × 10-3
122.140.210.9020830.2000.84395002.63 × 10-3
242.450.120.9624670.0660.89907203.04 × 10-3
722.180.220.9226540.0660.932082009.20 × 10-4
1682.300.190.9342460.0650.946236008.13 × 10-4
3Cr0.52.330.160.9235630.0850.93313606.99 × 10-4
122.220.160.9239580.0820.961635005.50 × 10-4
242.220.200.8542120.0590.953917001.28 × 10-3
722.190.170.9253140.0660.936195008.77 × 10-4
1682.230.160.9468380.0610.969406004.46 × 10-4
9Cr0.52.410.151.0031040.0720.90483609.64 × 10-4
122.350.160.8948190.0550.936427007.73 × 10-4
241.810.180.9359660.0470.948179004.06 × 10-4
722.340.311.0070370.0470.9411490009.31 × 10-4
1682.230.210.9381540.0480.9514580003.23 × 10-4
表2  20MnSi、3Cr和9Cr钢浸泡不同时间后等效电路的拟合参数
图7  20MnSi、3Cr和9Cr钢极化电阻(Rc)和电荷转移电阻(Ra)随时间变化曲线
图8  20MnSi、3Cr和9Cr钢在模拟混凝土溶液中浸泡不同时间后的Mott-Schottky (MS)曲线

Time

h

20MnSi3Cr9Cr
R1R2R1R2R1R2
0.54.885.203.625.183.573.48
124.525.063.463.892.453.04
244.114.423.133.482.322.94
723.393.902.923.291.942.57
1682.543.252.162.481.812.27
表3  20MnSi、3Cr和9Cr钢在模拟混凝土溶液中浸泡不同时间后点缺陷密度 (1021 cm-3)
图9  20MnSi、3Cr和9Cr钢浸泡168 h后表面钝化膜不同溅射深度的XPS
图10  3种钢筋钝化膜中不同元素含量随溅射深度变化曲线
图11  模拟混凝土溶液中浸泡24和168 h后,20MnSi、3Cr和9Cr钝化膜中不同成分随溅射深度分布
图12  20MnSi、3Cr和9Cr钢在模拟混凝土孔隙液中钝化膜生长机制示意图
1 Pang L, Li Q W. Service life prediction of RC structures in marine environment using long term chloride ingress data: Comparison between exposure trials and real structure surveys [J]. Constr. Build. Mater., 2016, 113: 979
2 Guo A X, Li H T, Ba X, et al. Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment [J]. Eng. Struct., 2015, 105: 1
3 Jin W L, Zhao Y X. Durability of Concrete Structures [M]. 2nd Ed., Beijing: Science Press, 2014: 15
3 金伟良, 赵羽习. 混凝土结构耐久性 [M]. 第2版. 北京: 科学出版社, 2014: 15
4 Coombes M A, La Marca E C, Naylor L A, et al. Getting into the groove: Opportunities to enhance the ecological value of hard coastal infrastructure using fine-scale surface textures [J]. Ecol. Eng., 2015, 77: 314
5 Morris W, Vazquez M. Corrosion of reinforced concrete exposed to marine environment [J]. Corros. Rev., 2002, 20: 469
6 Wang X H, Gao Y. Corrosion behavior of epoxy-coated reinforced bars in RC test specimens subjected to pre-exposure loading and wetting-drying cycles [J]. Constr. Build. Mater., 2016, 119: 185
7 Hou B R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017: 497
7 侯保荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017: 497
8 Ke W. Investigation Report on Corrosion in China [M]. Beijing: Chemical Industry Press, 2003: 22
8 柯 伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003: 22
9 Bertolini L, Elsener B, Pedeferri P, et al. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair [M]. 2nd Ed., Weinheim: John Wiley & Sons, 2013: 172
10 Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
11 Uemura M, Yamamoto T, Fushimi K, et al. Depth profile analysis of thin passive films on stainless steel by glow discharge optical emission spectroscopy [J]. Corros. Sci., 2009, 51: 1554
12 Vetter K J, Gorn F. Kinetics of layer formation and corrosion processes of passive iron in acid solutions [J]. Electrochim. Acta, 1973, 18: 321
13 Abreu C M, Cristóbal M J, Losada R, et al. Comparative study of passive films of different stainless steels developed on alkaline medium [J]. Electrochim. Acta, 2004, 49: 3049
14 Veleva L, Alpuche-Aviles M A, Graves-Brook M K, et al. Comparative cyclic voltammetry and surface analysis of passive films grown on stainless steel 316 in concrete pore model solutions [J]. J. Electroanal. Chem., 2002, 537: 85
15 Veleva L, Alpuche-Aviles M A, Graves-Brook M K, et al. Voltammetry and surface analysis of AISI 316 stainless steel in chloride-containing simulated concrete pore environment [J]. J. Electroanal. Chem., 2005, 578: 45
16 Alvarez S M, Bautista A, Velasco F. Corrosion behaviour of corrugated lean duplex stainless steels in simulated concrete pore solutions [J]. Corros. Sci., 2011, 53: 1748
17 Volpi E, Olietti A, Stefanoni M, et al. Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment [J]. J. Electroanal. Chem., 2015, 736: 38
18 Liu M, Cheng X Q, Li X G, et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution [J]. Constr. Build. Mater., 2015, 93: 884
19 Ghods P, Isgor O B, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution [J]. Corros. Sci., 2012, 58: 159
20 Ghods P, Isgor O B, McRae G, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement [J]. Cem. Concr. Compos., 2009, 31: 2
21 Cao C N. Principles of Electrochemistry of Corrosion [M]. 2nd Ed., Beijing: Chemical Industry Press, 2004: 34
21 曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004: 34
22 Xue F, Wei X, Dong J H, et al. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35: 596
23 Martínez I, Andrade C. Application of EIS to cathodically protected steel: Tests in sodium chloride solution and in chloride contaminated concrete [J]. Corros. Sci., 2008, 50: 2948
24 Luo H, Dong C F, Xiao Ket al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
25 Yao J Z, Macdonald D D, Dong C F. Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods [J]. Corros. Sci., 2019, 146: 221
26 Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci., 2005, 252: 1510
27 Liu L, Li Y, Wang F H. Pitting corrosion behavior of a sputtered nanocrystalline thin film of austenitic stainless steel in 3.5 mass% NaCl solution [J]. Corros. Sci. Prot. Technol., 2010, 22: 283
27 刘 莉, 李 瑛, 王福会. 奥氏体不锈钢溅射纳米晶薄膜的点蚀行为研究 [J]. 腐蚀科学与防护技术, 2010, 22: 283
28 Jiang J Y, Wang D Q, Chu H Y, et al. The passive film growth mechanism of new corrosion-resistant steel rebar in simulated concrete pore solution: Nanometer structure and electrochemical study [J]. Materials, 2017, 10: 412
29 Donik Č, Kocijan A, Grant J T, et al. XPS study of duplex stainless steel oxidized by oxygen atoms [J]. Corros. Sci., 2009, 51: 827
30 Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
31 Mesquita T J, Chauveau E, Mantel M, et al. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions [J]. Appl. Surf. Sci., 2013, 270: 90
32 Yuan X W, Wang X, Cao Y, et al. Natural passivation behavior and its influence on chloride-induced corrosion resistance of stainless steel in simulated concrete pore solution [J]. J. Mater. Res. Technol., 2020, 9: 12378
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[3] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[6] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[7] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[8] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[9] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[10] 陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
[11] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[12] 武占文,陈吉,朴楠,杨明川. Ni-WC纳米复合镀层的制备及钝化性能研究[J]. 金属学报, 2013, 49(10): 1185-1190.
[13] 檀玉 梁可心 张胜寒. 光电化学响应分析Ni201在中性溶液中形成表面钝化膜的半导体性质[J]. 金属学报, 2012, 48(8): 971-976.
[14] 魏欣,董俊华,佟健,郑志,柯伟. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响[J]. 金属学报, 2012, 48(4): 502-507.
[15] 赵博 杜翠薇 刘智勇 李晓刚 杨吉可 李月强. 剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2012, 48(12): 1530-1536.