Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 971-976    DOI: 10.3724/SP.J.1037.2011.00765
  论文 本期目录 | 过刊浏览 |
光电化学响应分析Ni201在中性溶液中形成表面钝化膜的半导体性质
檀玉,梁可心,张胜寒
华北电力大学环境科学与工程学院, 保定 071003
SEMICONDUCTOR PROPERTIES OF THE PASSIVE FILM FORMED ON Ni201 IN NEUTRAL SOLUTION
TAN Yu, LIANG Kexin, ZHANG Shenghan
School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003
引用本文:

檀玉 梁可心 张胜寒. 光电化学响应分析Ni201在中性溶液中形成表面钝化膜的半导体性质[J]. 金属学报, 2012, 48(8): 971-976.
, , . SEMICONDUCTOR PROPERTIES OF THE PASSIVE FILM FORMED ON Ni201 IN NEUTRAL SOLUTION[J]. Acta Metall Sin, 2012, 48(8): 971-976.

全文: PDF(1929 KB)  
摘要: 应用光电化学响应法和Mott-Schottky曲线法, 研究了Ni201在500 ℃空气中生成的氧化膜和在pH值为8.4的中性缓冲溶液中阳极氧化生成钝化膜的半导体性质, 分析了Ni201表面钝化膜的结构和组成. Mott-Schottky曲线表明, Ni201在该中性溶液中生成钝化膜的平带电位约为0.40 V, 其在500 ℃空气中生成的氧化膜的平带电位约为0.15 V, 前者的载流子浓度约是后者的34倍. 在中性缓冲溶液中生成钝化膜的光电流谱表明, Ni201的结构由内层NiO和外层Ni(OH)2构成, 其带隙宽度分别为2.8和1.6 eV. 其中, 具有晶体结构的内层NiO的带隙宽度与Ni201在500 ℃空气中生成的氧化膜的带隙宽度2.4 eV相似. 通过光电化学法和Mott-Schottky曲线建立 Ni201表面钝化膜的电子能带结构模型, 解释了其内层NiO和外层Ni(OH)$_{2}$同是p型半导体组成的钝化膜的半导体性质.
关键词 Ni201 钝化膜 Mott-Schottky曲线 光电化学响应半导体性质    
Abstract:The semiconductor properties of the passive film on Ni201 formed by anodic passivation in pH=8.4 buffer solution and the oxide film on Ni201 formed by thermally grown in air at 500 ℃ were investigated by photoelectrochemical response and Mott–Schottky response analysis. The Mott–Schottky plots for both the passive film and the thermal oxide film on Ni201 demonstrated that the two films exhibited p–type semiconductors with different values of flat band potential: 0.40 V for the passive film and 0.15 V for the thermally grown NiO. The photocurrent spectra of the passive film on Ni201 were derived into two peaks for inner NiO and outer Ni(OH)2 layers, respectively. The band gap energy Eg for the inner NiO was 2.8 eV and the Eg for outer Ni(OH)2 was 1.6 eV, respectively. The Eg of the inner NiO of the passive film on Ni201 (2.8 eV) was closed to that of the thermally grown oxide of Ni201 (2.4 eV), indicating that the inner NiO in the passive film is crystalline structure. An electronic energy band model of both p–type semiconductors of inner NiO and outer Ni(OH)2 layers was proposed to explain the photocurrent and Mott–Schottky plots for the passive film on Ni201.
Key wordsNi201    passive film    Mott–Schottky plot    photoelectrochemical response    semiconductor property
收稿日期: 2011-12-07     
ZTFLH: 

TM16

 
基金资助:

国家自然科学基金项目50971059和中央高校基本科研业务费项目10QX42资助

作者简介: 檀玉, 男, 1981年生, 博士
[1] Sato N. Corros Sci, 2000; 42: 1957

[2] Da C B M, Rondot B, Compere C, Montemor M F, Sim˜oes A M P, Ferreira M G S. Corros Sci, 1998; 40: 481

[3] Schmuki P, Bohni H. J Electrochem Soc, 1992; 139: 1908

[4] Kang J Q, Yang Y F, Jiang X, Shao H X. Corros Sci, 2008; 50: 3576

[5] Sato N. Corros Eng, 2005; 54: 92

(佐藤教男. 材料と环境, 2005; 54: 92)

[6] Hamadou L, Kadri A, Benbrahim N. J Electrochem Soc,2007; 154: 291

[7] Rangel C M, Silva T M, Belo M D. Electrochim Acta, 2005;50: 5076

[8] Cheng Y F, Luo J L. Electrochim Acta, 1999; 44: 2947

[9] Schmuki P, Bohni H. J Electrochem Soc, 1992; 139: 1908

[10] Sikora E, Macdonald D D. Electrochim Acta, 2002; 48: 69

[11] Darowicki K, Krakowiak S, Slepski P. Electrochim Acta, 2006; 51: 2204

[12] Belo M D, Hakiki N E, Ferreira M G S. Electrochim Acta, 1999; 44: 2473

[13] Hakiki N E, Belo M D, Sim˜oes A M P, Ferreira M G S. J Electrochem Soc, 1998; 145: 3821

[14] Kim J, Cho E, Kwon H. Corros Sci, 2001; 43: 1403

[15] Sunseri C, Piazza S, Quarto F D. J Electrochem Soc, 1990; 137: 2411

[16] Quarto F D, Piazza S, Sunseri C. Corros Sci, 1990; 31: 721

[17] Searson P C, Latanision R M. Electrochim Acta, 1990; 35: 445

[18] Kim J, Cho E, Kwon H. Electrochim Acta, 2001; 47: 415

[19] Fujimoto S, Tsuchiya H, Sakamoto M, Shibata T, Asami K. In: Cahay M, Jensen K L, Mumford P D, Binh V T, Holland C, Lee J D eds., Proc 201st Meeting of the Electrochemical

Society, Philadelphia, Pennsylvania, 12–17 May, 2002: 278

[20] Sunseri C, Piazza S, Di Q F. Mater Sci Forum, 1995; 185–188: 435

[21] Wilhelm S M, Hackerman N. J Electrochem Soc, 1981; 128: 1668

[22] Zhang S H, Tan Y, Liang K X. Acta Metall Sin, 2011; 47: 1147

(张胜寒, 檀玉, 梁可心. 金属学报, 2011; 47: 1147)

[23] Scherer J, Ocko B M, Magnussen O M. Electrochim Acta, 2003; 48: 1169

[24] Searson P C, Latanision R M. J Electrochem Soc, 1988; 135: 1358

[25] Tsuchiya H, Fujimoto S, Chihara O, Shibata T. Electrochim Acta, 2002; 47: 4357
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[3] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[6] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[7] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[8] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[9] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[10] 陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
[11] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[12] 武占文,陈吉,朴楠,杨明川. Ni-WC纳米复合镀层的制备及钝化性能研究[J]. 金属学报, 2013, 49(10): 1185-1190.
[13] 魏欣,董俊华,佟健,郑志,柯伟. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响[J]. 金属学报, 2012, 48(4): 502-507.
[14] 朱雪梅 曹雪梅 刘明 雷明凯 张彦生. 交变电场脉冲钝化Fe24Mn4Al5Cr反铁磁定膨胀合金及其耐蚀性研究[J]. 金属学报, 2012, 48(11): 1357-1364.
[15] 张胜寒 檀玉 梁可心. 光电化学法研究镍基合金在288℃高温水中生成氧化膜的半导体性质[J]. 金属学报, 2011, 47(9): 1147-1152.