Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1353-1362    DOI: 10.11900/0412.1961.2016.00392
  本期目录 | 过刊浏览 |
准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*
陈永君1,胡小刚1,羌建兵1,2,董闯1,2()
1 大连理工大学材料科学与工程学院, 大连 116024
2 大连理工大学三束材料改性教育部重点实验室, 大连 116024
QUASICRYSTAL ABRASIVE POLISHING ON SOFT METALS VIA A CHARACTERISTIC SMEARING WEAR MECHANISM FOR EFFICIENT SURFACE FLATTENING, HARDENING AND CORROSION ENHANCEMENT
Yongjun CHEN1,Xiaogang HU1,Jianbing QIANG1,2,Chuang DONG1,2()
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
引用本文:

陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
Yongjun CHEN, Xiaogang HU, Jianbing QIANG, Chuang DONG. QUASICRYSTAL ABRASIVE POLISHING ON SOFT METALS VIA A CHARACTERISTIC SMEARING WEAR MECHANISM FOR EFFICIENT SURFACE FLATTENING, HARDENING AND CORROSION ENHANCEMENT[J]. Acta Metall Sin, 2016, 52(10): 1353-1362.

全文: PDF(7256 KB)   HTML
  
摘要: 

考察了Al62Cu25.5Fe12.5准晶磨料对紫铜、2024铝合金和304不锈钢3种软金属表面的研磨行为, 从表面形貌、纳米硬度、碾抹系数、磨损量和电化学阻抗等方面与传统硬磨料(金刚石、Al2O3和SiO2)进行对比. 结果表明: 经准晶磨料抛光的工件表面形貌与碾抹程度相关, 碾抹系数越大, 表面越平整, 且碾抹系数与表面磨损率成反比. 尤其需要指出的是, 准晶磨料的这种“碾抹”特性可导致不锈钢表面产生硬化效应, 硬度可提高约0.3 GPa. 准晶磨料的碾抹特性还有利于2024铝合金表面生成高耐蚀能力的钝化膜.

关键词 准晶磨料软金属碾抹特性表面硬化钝化膜    
Abstract

Polishing soft metals using hard abrasives such as diamond, alumina, and silica can easily damage the worn surface by deep scratches and by large material removal due to cutting wear mechanism. An abrasive material with appropriate hardness, hardness/elasticity ratio, and low friction is then highly desirable, which would avoid intense abrasion while at the same time minimize scratching on soft metals. Quasicrystals are characterized by low friction and high hardness/elasticity ratio, making them potentially suitable for use as abrasives for soft metals. It has been pointed out by the authors that AlCuFe quasicrystal abrasive shows a particular smearing dominant wear mechanism and can be used as a special abrasive for flattening soft metals. In this work, the Al62Cu25.5Fe12.5 quasicrystal abrasive was chosen, to compare with conventional hard abrasives such as diamond, alumina and silica, to wear against copper, 2024 aluminum alloy and 304 stainless steel. The surface topography, nano-indentation hardness, smearing coefficient, mass loss and electrochemical impedance were measured and the results indicate that the surface flattening is influenced by the smearing coefficient, a parameter developed to assess the degree of smearing-type wearing. A larger smearing coefficient leads to a more flatten surface at the least expense of mass loss. It is specially noticed that the characteristic smearing mechanism of quasicrystal abrasive produces an obvious surface hardening effect, with the nano-hardness of 304 stainless steel being increased by about 0.3 GPa. The corrosion resistance of the Al alloy is also enhanced due to the formation of a thick and dense passive film.

Key wordsquasicrystal abrasive    soft metal    smearing wear    surface hardening    passive film
收稿日期: 2016-08-30     
ZTFLH:     
基金资助:* 国家自然科学基金资助项目51131002
图1  Al2O3, 准晶和SiO2 3种磨料的形貌
图2  紫铜表面标记初始压痕形状
图3  紫铜表面标记的压痕形貌随抛光时间的演变
图4  紫铜压痕对角线长度随抛光时间的变化
图5  4种磨料抛光软金属表面后碾抹系数对比
图6  4种磨料抛光紫铜后表面AFM形貌
图7  4种磨料抛光后2024铝合金表面AFM形貌
Material Abrasive Ra / nm RPV / nm RMS / nm
Copper Diamond 136 735 160
Al2O3 56 333 66
QC 49 286 60
SiO2 56 303 68
2024 aluminum alloy Diamond 29 323 36
Al2O3 41 423 52
QC 26 236 32
SiO2 33 343 42
304 stainless steel Diamond 13 173 17
Al2O3 13 176 18
QC 7 67 8
SiO2 126 625 145
表1  紫铜、2024铝合金和304不锈钢表面被不同磨料抛光后AFM的粗糙度
Material Diamond Al2O3 QC SiO2
Copper 0.01 0.05~0.07 0.09~0.15 0.12
2024 aluminum alloy 0.02 0.08~0.11 0.15~0.25 0.19
304 stainless steel 0.02 0.10~0.14 0.19~0.32 0.25
表2  紫铜、2024铝合金和304不锈钢与4种磨料相对硬度Hw/Ha[4,20-24]
图8  4种磨料对软金属表面的磨损率与碾抹系数的关系
图9  不同磨料处理后软金属表面纳米压痕硬度
图10  2024铝合金表面经不同磨料抛光处理后的Nyquist图和Bode图
Abrasive Rs Rf CPEf χ2 /10-4
Ωcm2 Ωcm2 Yf / (10-3Ω-1cm-2sn) nf
Diamond 4.497 421 1.900 0.586 2.22
Al2O3 5.873 741 1.009 0.677 1.38
QC 4.619 1065 0.767 0.732 0.72
SiO2 3.752 736 0.876 0.732 1.83
表3  2024铝合金经不同磨料抛光后表面钝化膜的等效电路模似结果
[1] Malkin S, Guo C S.Grinding Technology: Theory and Applications of Machining with Abrasives. 2nd Ed., New York: Industrial Press, 2008: 11
[2] Samuel L E.In: Blau P J ed., Friction, Lubrication, and Wear Technology. USA: ASM International, 1992: 352
[3] Qiang J B, Chen Q B, Dong C, Wang Y M, Wang Q.Chin Pat, 103242803, 2013
[3] (羌建兵, 陈千宝, 董闯, 王英敏, 王清. 中国专利, 103242803, 2013)
[4] Chen Y J, Qiang J B, Dong C.Intermetallics, 2016; 68: 23
[5] Ledieu J, Fournée V.C R Phys, 2014; 15: 48
[6] Rabson D A.Prog Surf Sci, 2012; 87: 253
[7] Thiel P A.Annu Rev Phys Chem, 2008; 59: 129
[8] Musil J, Nova?k P, C?erstvy? R, Soukup Z.J Vac Sci Technol, 2010; 28A: 244
[9] Leyland A, Matthews A.Wear, 2000; 246: 1
[10] Jenks C J, Thiel P A.Langmuir, 1998; 14: 1392
[11] Tsai A P, Inoue A, Masumoto T.Jpn J Appl Phys, 1987; 26: L1505
[12] Dubois J, Kang S, Stebut J V.J Mater Sci Lett, 1991; 10: 537
[13] Dubois J M.Chem Soc Rev, 2012; 41: 6760
[14] Bloom P D, Baikerikar K, Otaigbe J U, Sheares V V.Mater Sci Eng, 2000; A294: 156
[15] Huttunen-Saarivirta E.J Alloys Compd, 2004; 363: 150
[16] Richardson R.Wear, 1967; 10: 291
[17] Richardson R.Wear, 1968; 11: 245
[18] Larsen-Basse J, Premaratne B.In: Ludema K C ed., Proc Int Conf on Wear of Materials, New York: ASME, 1983: 161
[19] Deuis R, Subramanian C, Yellup J.Wear, 1996; 201: 132
[20] Blau P J.ASM Handbook. Vol.18, 10th Ed., Ohio: ASM International, 1992: 337
[21] Kang S S, Dubois J M, Stebut J V.J Mater Res, 1993; 8: 2471
[22] K?ster U, Liu W, Liebertz H, Michel M.J Non-Cryst Solids, 1993; 153: 446
[23] Bauccio M.ASM Engineered Materials Reference Book. 2nd Ed., Ohio: ASM international, 1994: 280
[24] Marinescu I D.Handbook of Advanced Ceramics Machining. Boca Raton: CRC Press, 2006: 10
[25] Dong C, Perrot A, Dubois J M, Belin E. Mater Sci Forum, 1994; 150-151: 403
[26] Chen Q B, Wang Y B, Qiang J B, Chen H, Wang Y M, Wang Q, Dong C.Chin J Nonferrous Met, 2013; 23: 1315
[26] (陈千宝, 王雁斌, 羌建兵, 陈华, 王英敏, 王清, 董闯. 中国有色金属学报, 2013; 23: 1315)
[27] Huang F, Wang J Q, Han E H, Ke W.Acta Metall Sin, 2011; 47: 7
[27] (黄发, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 7)
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[3] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[6] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[7] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[8] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[9] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[10] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[11] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[12] 武占文,陈吉,朴楠,杨明川. Ni-WC纳米复合镀层的制备及钝化性能研究[J]. 金属学报, 2013, 49(10): 1185-1190.
[13] 檀玉 梁可心 张胜寒. 光电化学响应分析Ni201在中性溶液中形成表面钝化膜的半导体性质[J]. 金属学报, 2012, 48(8): 971-976.
[14] 魏欣,董俊华,佟健,郑志,柯伟. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响[J]. 金属学报, 2012, 48(4): 502-507.
[15] 朱雪梅 曹雪梅 刘明 雷明凯 张彦生. 交变电场脉冲钝化Fe24Mn4Al5Cr反铁磁定膨胀合金及其耐蚀性研究[J]. 金属学报, 2012, 48(11): 1357-1364.