Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 502-507    DOI: 10.3724/SP.J.1037.2011.00489
  论文 本期目录 | 过刊浏览 |
温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响
魏欣1,2,董俊华1,佟健1,郑志1,柯伟1
1. 中国科学院金属研究所, 沈阳 110016
2. 大连理工大学材料科学与工程学院, 大连 116024
INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION
WEI Xin1,2, DONG Junhua1, TONG Jian1, ZHENG Zhi1,KE Wei1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. College of Materials Science and Engineering, Dalian University ofTechnology, Dalian 116024
引用本文:

魏欣,董俊华,佟健,郑志,柯伟. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响[J]. 金属学报, 2012, 48(4): 502-507.
, , , , . INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. Acta Metall Sin, 2012, 48(4): 502-507.

全文: PDF(665 KB)  
摘要: 通过循环极化曲线、Mott--Schottky曲线以及电化学阻抗谱等方法研究了温度对 Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响. 结果表明: 随着温度升高, Cr26Mo1超纯高铬铁素体不锈钢的自腐蚀电位降低, 腐蚀电流密度增大, 点蚀电位下降, 钝化膜阻抗降低. Cr26Mo1不锈钢钝化膜的半导体类型和性质在不同温度下发生改变. Cr26Mo1不锈钢发生点蚀的孕育期随着温度的升高而缩短, 点蚀敏感性增加, 已发生点蚀的试样不能够自修复.
关键词 超纯高铬铁素体不锈钢钝化膜循环极化点蚀    
Abstract:The remarkable uniform corrosion resistance of ultra pure high chromium ferrite stainless steel in various rigorous corrosive environments is based on the formation of a passive film on its surface. However, it is suspected that this stainless steel was easy to suffer from pitting corrosion. In this work, the influences of temperature on the pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel were studied by electrochemical methods such as cyclic polarization curves, Mott-Schottky curves and electrochemical impedance spectroscopy in 3.5%NaCl solution. The results showed that with the increase of the temperature, open-circuit corrosion potential and pitting corrosion potential decreased, corrosion current density increased, the impedance of passive film decreased. The semi-conductive styles and properties of passive film changed at different temperatures. Also, the pregnancy time of pitting shortened and the sensitivity of pitting increased remarkably as the temperature increased. In addition, the cyclic polarization curves indicated that the repassivation of existing pits was more difficult when the potential was swept toward the negative direction.
Key wordsultra pure high chromium ferrite stainless steel    passive film    cyclic polarization    pitting corrosion
收稿日期: 2011-07-27     
基金资助:

国家自然科学基金资助项目 51071160

作者简介: 魏欣, 男, 1982年生, 博士生
[1] Ilevbare G O, Burstein G T.  Corros Sci, 2003; 45: 1545

[2] Sekine I, Okano C, Yuasa M.  Corros Sci, 1990; 30: 351

[3] Hiraide N.  World Iron Steel, 2004; 6: 33

[4] You X M, Jiang Z H, Li H B, Shen M H, Cao Y.  China Metall,2006; 16(11): 16

    (游香米, 姜周华, 李花兵, 申明辉, 曹阳. 中国冶金, 2006; 16(11): 16 )

[5] Latanision R M, Kloppers M J, Bellucci F.  Corrosion, 1992; 48: 229

[6] Kaneko M, Isaaca H S.  Corros Sci, 2002; 44: 1825

[7] Shan Y T, Luo X H, Hu X Q, Liu S.  J Mater Sci Technol, 2011; 27: 352

[8] Ernst P, Newman R C.  Corros Sci, 2007; 49: 3705

[9] Rosenfeld I L, Danilov I S, Oranskaya R N.  J Electrochem Soc,1978; 125: 1728

[10] Stockert L, Hunkeler F, Bohni H.  Corrosion, 1985; 41: 676

[11] Carmezim M J, Simoes A M, Montemor M F, Da C B M.  Corros Sci,2005; 47: 581

[12] Ferreira M G S, Hakiki N E, Goodlet G, Faty S, Simoes A M P, Da C B M. Electrochim Acta, 2001; 46: 3767

[13] McCafferty E.  Corros Sci, 2003; 45: 301

[14] Jin B, Zheng M S, Zhu J W.  Corros Sci Prot Technol, 2006; 18: 348

     (金波, 郑茂盛, 朱杰武. 腐蚀科学与防护技术, 2006; 18: 348)

[15] Lin Y H, Du R G, Hu R G, Lin C J.  Acta Phys Chim Sin, 2005; 21: 740

     (林玉华, 杜荣归, 胡融刚, 林昌健. 物理化学学报, 2005; 21: 740)

[16] Li W S, Luo J L.  Electrochem Commun, 1999; 1: 349

[17] Paola A P, Shukla D, Stimming U.  Electrochim Acta, 1991; 36: 345

[18] Sunseri C, Piazza S, Di Quarto F.  J Electrochem Soc,1990; 137: 2411

[19] Montemor M F, Ferreira M G S, Hakiki N E, Da C B M.  Corros Sci,2000; 42: 1635

[20] Macdonald D D, Urquidi-Macdonald M.  J Electrochem Soc,1990; 137: 2395

[21] Eghbali F, Moayed M H, Davoodi A, Ebrahimi N.  Corros Sci,2011; 53: 513

[22] Moayed M H, Newman R C.  Corros Sci, 2006; 48: 1004

[23] Cao C N.  Principles of Electrochemistry of Corrosion.Beijing: Chemical Industry Press, 2008: 248

     (曹楚南, 腐蚀电化学原理, 北京: 化学工业出版社, 2008: 248)

[24] Eghbali F, Moayed M H, Davoodi A, Ebrahimi N.  Corros Sci,2011; 53: 513

[25] Ningshen S, Mudali U K, Mittal V K, Khatak H S.  Corros Sci,2007; 49: 481
 
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[5] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[6] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[7] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[8] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[9] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[10] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[11] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[12] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[13] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[14] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[15] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.