|
|
阴极保护条件对高压直流干扰下X80钢腐蚀行为的影响规律及作用机制 |
谷少杰1, 刘洋1, 李彩霞1, 胡上茂2, 杜艳霞1( ) |
1 北京科技大学 新材料技术研究院 北京 100083 2 南方电网科学研究院有限责任公司 广州 510663 |
|
Effect and Mechanism of Cathodic Protection Conditions on the Corrosion Behavior of X80 Steel Under HVDC Interference |
GU Shaojie1, LIU Yang1, LI Caixia1, HU Shangmao2, DU Yanxia1( ) |
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2 CSG Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China |
引用本文:
谷少杰, 刘洋, 李彩霞, 胡上茂, 杜艳霞. 阴极保护条件对高压直流干扰下X80钢腐蚀行为的影响规律及作用机制[J]. 金属学报, 2025, 61(6): 917-928.
Shaojie GU,
Yang LIU,
Caixia LI,
Shangmao HU,
Yanxia DU.
Effect and Mechanism of Cathodic Protection Conditions on the Corrosion Behavior of X80 Steel Under HVDC Interference[J]. Acta Metall Sin, 2025, 61(6): 917-928.
1 |
Liao M F, Zhang X L, Xing X Y, et al. Research status and development trend of grounding current effect of UHVDC grounding electrode on corrosion of the metal pipelines [J]. High Volt. Appar., 2018, 54(7): 44
|
1 |
廖敏夫, 张晓莉, 邢小羽 等. 特高压直流接地极入地电流对金属管道腐蚀研究现状与发展趋势 [J] 高压电器, 2018, 54(7): 44
|
2 |
Cao G F, Gu Q L, Jiang Y T, et al. Current interference of HVDC ground electrode to buried pipelines and its personal safety distance [J]. Nat. Gas Ind., 2019, 39(3): 125
|
2 |
曹国飞, 顾清林, 姜永涛 等. 高压直流接地极对埋地管道的电流干扰及人身安全距离 [J]. 天然气工业, 2019, 39(3): 125
|
3 |
Ren Z P. China's new infrastructure research report (2022) [J]. Dev. Res., 2022, 39(6): 21
|
3 |
任泽平. 中国新基建研究报告(2022) [J]. 发展研究, 2022, 39(6): 21
|
4 |
Qin R Z, Du Y X, Jiang Z T, et al. Research status of interference of HVDC transmission system to buried metal pipelines [J]. Corros. Sci. Protect. Technol., 2016, 28: 263
|
4 |
秦润之, 杜艳霞, 姜子涛 等. 高压直流输电系统对埋地金属管道的干扰研究现状 [J]. 腐蚀科学与防护技术, 2016, 28: 263
doi: 10.11903/1002.6495.2015.265
|
5 |
Ying B. Influence of ground pole of HVDC system on safe operation of long distance transmission pipeline [J]. Oil-Gasfield Surf. Eng., 2014, 33(7): 23
|
5 |
应 斌. 高压直流输电系统接地极对长输管道安全运行的影响 [J]. 油气田地面工程, 2014, 33(7): 23
|
6 |
Xu Z C, Du Y Q, Du Y X, et al. Research status of interference caused by HVDC grounding in buried metal pipeline [J]. Corros. Prot., 2020, 41(3): 63
|
6 |
许振昌, 都业强, 杜艳霞 等. 高压直流接地极对埋地金属管道干扰的研究现状 [J]. 腐蚀与防护, 2020, 41(3): 63
|
7 |
Liang X M, Zhang P, Chang Y. Recent advances in high-voltage direct-current power transmission and its developing potential [J]. Power Syst. Technol., 2012, 36(4): 1
|
7 |
梁旭明, 张 平, 常 勇. 高压直流输电技术现状及发展前景 [J]. 电网技术, 2012, 36(4): 1
|
8 |
Caroli C E, Santos N, Kovarsky D, et al. Itaipu HVDC ground electrodes: Interference considerations and potential curve measurements during Bipole II commissioning [J]. IEEE Trans. Power Deliv., 1990, 5: 1583
|
9 |
Nicholson P. High voltage direct current interference with underground/underwater pipelines [A], Corrosion 2010 [C]. San Antonio: NACE, 2010: 10102
|
10 |
Wang Y B. Research on stray current drainage engineering of Sichuan gas transmission pipeline to the east [D]. Xi'an: Xi'an Shiyou University, 2010
|
10 |
王雁冰. 川气东送管道杂散电流排流工程技术研究 [D]. 西安: 西安石油大学, 2010
|
11 |
Li Z J. Field test and analysis of interference of high or ultra high voltage direct current transmission system to underground steel pipeline [J]. Corros. Prot., 2017, 38: 142
|
11 |
李振军. 高压/特高压直流输电系统对埋地钢质管道干扰的现场测试与分析 [J]. 腐蚀与防护, 2017, 38: 142
|
12 |
Li D D. Study on interference law of HVDC transmission line to a buried metal pipeline [D]. Chengdu: SouthWest Petroleum University, 2014
|
12 |
李丹丹. 高压直流输电线路对某埋地金属管道的干扰规律研究 [D]. 成都: 西南石油大学, 2014
|
13 |
Qin R Z, Du Y X, Peng G Z, et al. High voltage direct current interference on buried pipelines: Case study and mitigation design [A], Corrosion 2017 [C]. New Orleans, Louisiana, USA: NACE International, 2017: 9049
|
14 |
Qian S, Cheng Y F. Accelerated corrosion of pipeline steel and reduced cathodic protection effectiveness under direct current interference [J]. Constr. Build. Mater., 2017, 148: 675
|
15 |
Yang C, Zhang C B, Li Z L, et al. Effects of direct current interference on corrosion behavior of X65 steel [J]. Corros. Prot., 2016, 37: 873
|
15 |
杨 超, 张成斌, 李自力 等. 直流杂散电流对X65钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 873
|
16 |
Dai N W, Chen Q M, Zhang J X, et al. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment [J]. Mater. Chem. Phys., 2017, 192: 190
|
17 |
Qin R Z, Du Y X, Lu M X, et al. Study on interference parameters variation regularity and corrosion behavior of X80 steel in Guangdong soil under high voltage direct current interference [J]. Acta Metall. Sin., 2017, 54: 886
|
17 |
秦润之, 杜艳霞, 路民旭 等. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究 [J]. 金属学报, 2017, 54: 886
|
18 |
Zhang H, Du Y X, Qin R Z, et al. Study on corrosion behavior of X80 steel in Guangdong soil with different water contents under HVDC interference [J]. Electrochemistry, 2020, 88: 1
doi: 10.5796/electrochemistry.19-00003
|
19 |
Cao Z Y. Study for calcareous deposits under initial cathodic protection in simulated deep ocean environment [D]. Qingdao: Ocean University of China, 2010
|
19 |
曹振宇. 模拟深海环境阴极保护初期钙镁沉积层的研究 [D]. 青岛: 中国海洋大学, 2010
|
20 |
Fu C F, Yang B K, Yang D N, et al. Stray current corrosion of Q235 steel in Hainan soil [J]. Corros. Prot., 2017, 38: 756
|
20 |
符传福, 杨丙坤, 杨大宁 等. 海南土壤中Q235钢的杂散电流腐蚀 [J]. 腐蚀与防护, 2017, 38: 756
|
21 |
Bertolini L, Carsana M, Pedeferri P. Corrosion behaviour of steel in concrete in the presence of stray current [J]. Corros. Sci., 2007, 49: 1056
|
22 |
Refait P, Abdelmoula M, Génin J M R. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions [J]. Corros. Sci., 1998, 40: 1547
|
23 |
Refait P, Génin J M R. The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one [J]. Corros. Sci., 1993, 34: 797
|
24 |
Hu S X. Handbook of Cathodic Protection Engineering [M]. Beijing: Chemical Industry Press, 1999: 34
|
24 |
胡士信. 阴极保护工程手册 [M]. 北京: 化学工业出版社, 1999: 34
|
25 |
Deslouis C, Festy D, Gil O, et al. Characterization of calcareous deposits in artificial sea water by impedance techniques—I. Deposit of CaCO3 without Mg(OH)2 [J]. Electrochim. Acta, 1998, 43: 1891
|
26 |
Li C J, Du M. The growth mechanism of calcareous deposits under various hydrostatic pressures during the cathodic protection of carbon steel in seawater [J]. RSC Adv., 2017, 7: 28819
|
27 |
Alcántara J, Chico B, Simancas J, et al. An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres [J]. Mater. Charact., 2016, 118: 65
|
28 |
Xu W, Daub K, Zhang X, et al. Oxide formation and conversion on carbon steel in mildly basic solutions [J]. Electrochim. Acta, 2009, 54: 5727
|
29 |
Frangini S, De Cristofaro N. Analysis of the galvanostatic polarization method for determining reliable pitting potentials on stainless steels in crevice-free conditions [J]. Corros. Sci., 2003, 45: 2769
|
30 |
Song Y R, Jiang G M, Chen Y, et al. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments [J]. Sci. Rep., 2017, 7: 6865
doi: 10.1038/s41598-017-07245-1
pmid: 28761066
|
31 |
Du Y X, Wierzbinski E, Waldeck D H. Research on the difference of characteristics at steel/electrolyte interface under cathodic protection and in high-pH alkaline solution [J]. J. Electroanal. Chem., 2022, 925: 116878
|
32 |
Qin R Z, Du Y X, Xu Z C, et al. Influence of Cl- ions on anodic polarization behaviour of API X80 steel in high potential/current density conditions in Na2SO4 solution [J]. RSC Adv., 2019, 9: 7698
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|