Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 917-928    DOI: 10.11900/0412.1961.2023.00238
  研究论文 本期目录 | 过刊浏览 |
阴极保护条件对高压直流干扰下X80钢腐蚀行为的影响规律及作用机制
谷少杰1, 刘洋1, 李彩霞1, 胡上茂2, 杜艳霞1()
1 北京科技大学 新材料技术研究院 北京 100083
2 南方电网科学研究院有限责任公司 广州 510663
Effect and Mechanism of Cathodic Protection Conditions on the Corrosion Behavior of X80 Steel Under HVDC Interference
GU Shaojie1, LIU Yang1, LI Caixia1, HU Shangmao2, DU Yanxia1()
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 CSG Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China
引用本文:

谷少杰, 刘洋, 李彩霞, 胡上茂, 杜艳霞. 阴极保护条件对高压直流干扰下X80钢腐蚀行为的影响规律及作用机制[J]. 金属学报, 2025, 61(6): 917-928.
Shaojie GU, Yang LIU, Caixia LI, Shangmao HU, Yanxia DU. Effect and Mechanism of Cathodic Protection Conditions on the Corrosion Behavior of X80 Steel Under HVDC Interference[J]. Acta Metall Sin, 2025, 61(6): 917-928.

全文: PDF(3518 KB)   HTML
摘要: 

近年来,埋地油气管道受到的高压直流干扰问题引起广泛关注,如何准确评估高压直流干扰对埋地金属管道带来的腐蚀影响,并进行有效的防护成为实际生产的迫切需求,但目前较少关注管道本身的阴极保护对高压直流干扰下腐蚀行为的作用。本工作通过实验室模拟实验,研究了高压直流干扰前阴极保护条件对高压直流干扰下X80钢腐蚀行为的影响。结果表明,在20 V直流干扰1 h作用下,未施加阴极保护时X80钢的腐蚀速率为170.81 μm/h,阴极保护预处理电位为-0.85、-0.95、-1.05及-1.20 V时,腐蚀速率分别为124.39、87.13、54.56及1.45 μm/h。通过表面产物膜层、电化学阻抗谱、极化特性等分析了不同阴极保护预处理电位对高压直流腐蚀行为的影响机制,结果表明,-0.85~-1.05 V下,直流干扰后试样产物主要是绿锈(GR1)和钙镁沉积层的混合物,试样腐蚀速率随阴极保护预处理电位逐渐负移而降低,原因是试样表面生成的钙镁沉积层质量逐渐升高;-1.20 V阴极保护极化电位下,腐蚀速率远小于其他电位的原因是试样在高阴极保护电位和高压直流干扰的综合作用下产生了钝化。

关键词 X80钢高压直流干扰阴极保护腐蚀行为    
Abstract

Recently, the problem of high-voltage direct current (HVDC) interference suffered by buried oil and gas pipelines has attracted widespread attention among research communities. Hence, accurately assessing the corrosive impact of HVDC interference on buried metal pipelines and performing effective protection procedures for the prevention of such corrosion have become priority issues that need to be resolved for producing reinforced pipelines. To date, the effect of the cathodic protection of the pipeline on the corrosion behavior of X80 steel under HVDC interference has rarely been reported. Hence, in this study, the corrosion behavior of X80 steel without cathodic protection conditions before HVDC interference and the effect of these protection conditions on the corrosion behavior of X80 steel under HVDC interference were studied through laboratory simulation experiments. Results showed that the corrosion rate of X80 steel was 170.81 μm/h without cathodic protection under 20 V DC interference for 1 h. When the cathodic protection pretreatment potentials were -0.85, -0.95, -1.05, and -1.20 V, the corrosion rates were 124.39, 87.13, 54.56, and 1.45 μm/h, respectively. The effect of various cathodic protection pretreatment potentials on the corrosion behavior of X80 steel under HVDC interference was clarified based on the product surface membrane layer, polarization, and EIS results. For the cathodic protection pretreatment potential of -0.85 to -1.05 V, the sample products after HVDC interference mainly showed a mixture of green rust GR1, calcium, and magnesium deposits; the corrosion rate of the sample products decreased with the increasing negative cathodic protection pretreatment potential under DC interference due to the gradual increase in the quality of the calcium and magnesium deposited layer on the surface of the sample products. At -1.20 V cathodic protection polarization potential, the corrosion rate of the sample products was substantially lower than that at other potentials because passivation of the products occurred under the combined action of high cathodic protection potential and HVDC interference.

Key wordsX80 steel    HVDC interference    cathodic protection    corrosion behavior
收稿日期: 2023-06-05     
通讯作者: 杜艳霞,duyanxia@ustb.edu.cn,主要从事阴极保护及杂散电流干扰方面的研究
Corresponding author: DU Yanxia, professor, Tel: (010)62333972, E-mail: duyanxia@ustb.edu.cn
作者简介: 谷少杰,男,1996年生,硕士生
图1  阴极保护系统装置和高压直流干扰模拟实验装置图
图2  不同阴极保护极化电位时的电流密度变化及腐蚀速率
图3  不同阴极保护极化电位条件下阴极保护4 d后试样的表面宏观形貌
图4  不同阴保电位直流干扰后及酸洗后试样的宏观腐蚀形貌
图5  干扰后试样表面腐蚀产物的XRD谱
图6  -1.20 V阴极保护4 d、20 V直流干扰1 h后试样腐蚀产物的XPS
图7  不同阴极保护极化电位阴极保护4 d后的电化学阻抗谱(EIS)
图8  阴极保护后EIS等效电路图

Potential (vs SCE)

V

RS

Ω·cm2

Rf

Ω·cm2

Qf

S·s n ·cm-2

nf

Rt

Ω·cm2

Qdl

S·s n ·cm-2

ndl
-0.8511.7018.953.142 × 10-40.854168753.119 × 10-40.889
-0.9543.2565.002.887 × 10-40.806324103.105 × 10-40.803
-1.0566.1353.881.017 × 10-30.804410641.57 × 10-40.802
-1.20289.00180.201.152 × 10-50.79461022.222 × 10-40.876
表1  阴极保护后EIS拟合结果
图9  不同阴极保护极化电位阴极保护4 d、20 V直流干扰1 h后的EIS

Potential (vs SCE)

V

RS

Ω·cm2

Rf

Ω·cm2

Qf

S·s n ·cm-2

nf

Rt

Ω·cm2

Qdl

S·s n ·cm-2

ndl
-0.8530.8812.902.915 × 10-30.68844.593.055 × 10-30.855
-0.9532.806.905.928 × 10-40.77387.028.532 × 10-40.874
-1.0562.7497.091.021 × 10-30.747112.101.856 × 10-30.935
-1.2060.54208.31.355 × 10-50.328898508.894 × 10-40.807
表2  阴极保护干扰后EIS拟合结果
图10  不同阴极保护极化电位阴极保护4 d后试样表面微观形貌及EDS分析结果
图11  不同阴极保护极化电位阴极保护4 d、20 V直流干扰1 h后试样表面微观形貌及EDS分析结果
图12  -1.20 V阴极保护下试样表面的Cl-浓度变化曲线,及不同阴极保护电位下试样的阳极极化曲线
1 Liao M F, Zhang X L, Xing X Y, et al. Research status and development trend of grounding current effect of UHVDC grounding electrode on corrosion of the metal pipelines [J]. High Volt. Appar., 2018, 54(7): 44
1 廖敏夫, 张晓莉, 邢小羽 等. 特高压直流接地极入地电流对金属管道腐蚀研究现状与发展趋势 [J] 高压电器, 2018, 54(7): 44
2 Cao G F, Gu Q L, Jiang Y T, et al. Current interference of HVDC ground electrode to buried pipelines and its personal safety distance [J]. Nat. Gas Ind., 2019, 39(3): 125
2 曹国飞, 顾清林, 姜永涛 等. 高压直流接地极对埋地管道的电流干扰及人身安全距离 [J]. 天然气工业, 2019, 39(3): 125
3 Ren Z P. China's new infrastructure research report (2022) [J]. Dev. Res., 2022, 39(6): 21
3 任泽平. 中国新基建研究报告(2022) [J]. 发展研究, 2022, 39(6): 21
4 Qin R Z, Du Y X, Jiang Z T, et al. Research status of interference of HVDC transmission system to buried metal pipelines [J]. Corros. Sci. Protect. Technol., 2016, 28: 263
4 秦润之, 杜艳霞, 姜子涛 等. 高压直流输电系统对埋地金属管道的干扰研究现状 [J]. 腐蚀科学与防护技术, 2016, 28: 263
doi: 10.11903/1002.6495.2015.265
5 Ying B. Influence of ground pole of HVDC system on safe operation of long distance transmission pipeline [J]. Oil-Gasfield Surf. Eng., 2014, 33(7): 23
5 应 斌. 高压直流输电系统接地极对长输管道安全运行的影响 [J]. 油气田地面工程, 2014, 33(7): 23
6 Xu Z C, Du Y Q, Du Y X, et al. Research status of interference caused by HVDC grounding in buried metal pipeline [J]. Corros. Prot., 2020, 41(3): 63
6 许振昌, 都业强, 杜艳霞 等. 高压直流接地极对埋地金属管道干扰的研究现状 [J]. 腐蚀与防护, 2020, 41(3): 63
7 Liang X M, Zhang P, Chang Y. Recent advances in high-voltage direct-current power transmission and its developing potential [J]. Power Syst. Technol., 2012, 36(4): 1
7 梁旭明, 张 平, 常 勇. 高压直流输电技术现状及发展前景 [J]. 电网技术, 2012, 36(4): 1
8 Caroli C E, Santos N, Kovarsky D, et al. Itaipu HVDC ground electrodes: Interference considerations and potential curve measurements during Bipole II commissioning [J]. IEEE Trans. Power Deliv., 1990, 5: 1583
9 Nicholson P. High voltage direct current interference with underground/underwater pipelines [A], Corrosion 2010 [C]. San Antonio: NACE, 2010: 10102
10 Wang Y B. Research on stray current drainage engineering of Sichuan gas transmission pipeline to the east [D]. Xi'an: Xi'an Shiyou University, 2010
10 王雁冰. 川气东送管道杂散电流排流工程技术研究 [D]. 西安: 西安石油大学, 2010
11 Li Z J. Field test and analysis of interference of high or ultra high voltage direct current transmission system to underground steel pipeline [J]. Corros. Prot., 2017, 38: 142
11 李振军. 高压/特高压直流输电系统对埋地钢质管道干扰的现场测试与分析 [J]. 腐蚀与防护, 2017, 38: 142
12 Li D D. Study on interference law of HVDC transmission line to a buried metal pipeline [D]. Chengdu: SouthWest Petroleum University, 2014
12 李丹丹. 高压直流输电线路对某埋地金属管道的干扰规律研究 [D]. 成都: 西南石油大学, 2014
13 Qin R Z, Du Y X, Peng G Z, et al. High voltage direct current interference on buried pipelines: Case study and mitigation design [A], Corrosion 2017 [C]. New Orleans, Louisiana, USA: NACE International, 2017: 9049
14 Qian S, Cheng Y F. Accelerated corrosion of pipeline steel and reduced cathodic protection effectiveness under direct current interference [J]. Constr. Build. Mater., 2017, 148: 675
15 Yang C, Zhang C B, Li Z L, et al. Effects of direct current interference on corrosion behavior of X65 steel [J]. Corros. Prot., 2016, 37: 873
15 杨 超, 张成斌, 李自力 等. 直流杂散电流对X65钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 873
16 Dai N W, Chen Q M, Zhang J X, et al. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment [J]. Mater. Chem. Phys., 2017, 192: 190
17 Qin R Z, Du Y X, Lu M X, et al. Study on interference parameters variation regularity and corrosion behavior of X80 steel in Guangdong soil under high voltage direct current interference [J]. Acta Metall. Sin., 2017, 54: 886
17 秦润之, 杜艳霞, 路民旭 等. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究 [J]. 金属学报, 2017, 54: 886
18 Zhang H, Du Y X, Qin R Z, et al. Study on corrosion behavior of X80 steel in Guangdong soil with different water contents under HVDC interference [J]. Electrochemistry, 2020, 88: 1
doi: 10.5796/electrochemistry.19-00003
19 Cao Z Y. Study for calcareous deposits under initial cathodic protection in simulated deep ocean environment [D]. Qingdao: Ocean University of China, 2010
19 曹振宇. 模拟深海环境阴极保护初期钙镁沉积层的研究 [D]. 青岛: 中国海洋大学, 2010
20 Fu C F, Yang B K, Yang D N, et al. Stray current corrosion of Q235 steel in Hainan soil [J]. Corros. Prot., 2017, 38: 756
20 符传福, 杨丙坤, 杨大宁 等. 海南土壤中Q235钢的杂散电流腐蚀 [J]. 腐蚀与防护, 2017, 38: 756
21 Bertolini L, Carsana M, Pedeferri P. Corrosion behaviour of steel in concrete in the presence of stray current [J]. Corros. Sci., 2007, 49: 1056
22 Refait P, Abdelmoula M, Génin J M R. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions [J]. Corros. Sci., 1998, 40: 1547
23 Refait P, Génin J M R. The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one [J]. Corros. Sci., 1993, 34: 797
24 Hu S X. Handbook of Cathodic Protection Engineering [M]. Beijing: Chemical Industry Press, 1999: 34
24 胡士信. 阴极保护工程手册 [M]. 北京: 化学工业出版社, 1999: 34
25 Deslouis C, Festy D, Gil O, et al. Characterization of calcareous deposits in artificial sea water by impedance techniques—I. Deposit of CaCO3 without Mg(OH)2 [J]. Electrochim. Acta, 1998, 43: 1891
26 Li C J, Du M. The growth mechanism of calcareous deposits under various hydrostatic pressures during the cathodic protection of carbon steel in seawater [J]. RSC Adv., 2017, 7: 28819
27 Alcántara J, Chico B, Simancas J, et al. An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres [J]. Mater. Charact., 2016, 118: 65
28 Xu W, Daub K, Zhang X, et al. Oxide formation and conversion on carbon steel in mildly basic solutions [J]. Electrochim. Acta, 2009, 54: 5727
29 Frangini S, De Cristofaro N. Analysis of the galvanostatic polarization method for determining reliable pitting potentials on stainless steels in crevice-free conditions [J]. Corros. Sci., 2003, 45: 2769
30 Song Y R, Jiang G M, Chen Y, et al. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments [J]. Sci. Rep., 2017, 7: 6865
doi: 10.1038/s41598-017-07245-1 pmid: 28761066
31 Du Y X, Wierzbinski E, Waldeck D H. Research on the difference of characteristics at steel/electrolyte interface under cathodic protection and in high-pH alkaline solution [J]. J. Electroanal. Chem., 2022, 925: 116878
32 Qin R Z, Du Y X, Xu Z C, et al. Influence of Cl- ions on anodic polarization behaviour of API X80 steel in high potential/current density conditions in Na2SO4 solution [J]. RSC Adv., 2019, 9: 7698
[1] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[2] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[3] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[6] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[7] 张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
[8] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[9] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[10] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[11] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
[12] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.
[13] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[14] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[15] 郝雪卉,董俊华,魏洁,柯伟,王长罡,徐小连,叶其斌. AH32耐蚀钢显微组织对其腐蚀行为的影响[J]. 金属学报, 2012, 48(5): 534-540.