|
|
可降解镁基复合材料的制备及其在骨科领域的研究进展 |
欧阳思慧1,2,3, 佘加1,2,3, 陈先华1,2( ), 潘复生1,2 |
1 重庆大学 国家镁合金材料工程技术研究中心 重庆 400044 2 重庆大学 材料科学与工程学院 重庆 400044 3 兰溪镁材料研究院 兰溪 321100 |
|
Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications |
OUYANG Sihui1,2,3, SHE Jia1,2,3, CHEN Xianhua1,2( ), PAN Fusheng1,2 |
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China 2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 3 Lanxi Magnesium Materials Research Institute, Lanxi 321100, China |
引用本文:
欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
Sihui OUYANG,
Jia SHE,
Xianhua CHEN,
Fusheng PAN.
Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications[J]. Acta Metall Sin, 2025, 61(3): 455-474.
1 |
Ledet E H, Liddle B, Kradinova K, et al. Smart implants in orthopedic surgery, improving patient outcomes: A review [J]. Innov. Entrep. Health, 2018, 5: 41
|
2 |
Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective [J]. Biomaterials, 1998, 19: 1621
doi: 10.1016/s0142-9612(97)00146-4
pmid: 9839998
|
3 |
Minetto M A, Giannini A, McConnell R, et al. Common musculoskeletal disorders in the elderly: The star triad [J]. J. Clin. Med., 2020, 9: 1216
|
4 |
Bairagi D, Mandal S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects [J]. J. Magnes. Alloy., 2022, 10: 627
|
5 |
Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications [J]. Mater. Sci. Eng., 2019, C102: 844
|
6 |
Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
|
6 |
李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
|
7 |
Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Mater. Sci. Eng., 2016, C68: 948
|
8 |
Azadani M N, Zahedi A, Bowoto O K, et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications [J]. Prog. Biomater., 2022, 11: 1
doi: 10.1007/s40204-022-00182-x
pmid: 35239157
|
9 |
Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
|
9 |
曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
|
10 |
Payr E. Beitrage zur technik der blutgesfass und nervennaht nebst mittheilungen die verwendung eines resorbierharen metalles in der chirurgie [J]. Arch. Klin. Chir., 1900, 62: 67
|
11 |
Costello R B, Elin R J, Rosanoff A, et al. Perspective: The case for an evidence-based reference interval for serum magnesium: The time has come [J]. Adv. Nutr., 2016, 7: 977
doi: 10.3945/an.116.012765
pmid: 28140318
|
12 |
Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study [J]. BioMed. Eng. Online, 2013, 12: 62
doi: 10.1186/1475-925X-12-62
pmid: 23819489
|
13 |
Lee J W, Han H S, Han K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy [J]. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 716
|
14 |
Delsmann M M, Stürznickel J, Kertai M, et al. Radiolucent zones of biodegradable magnesium-based screws in children and adolescents—A radiographic analysis [J]. Arch. Orthop. Trauma Surg., 2023, 143: 2297
|
15 |
Jungesblut O D, Moritz M, Spiro A S, et al. Fixation of unstable osteochondritis dissecans lesions and displaced osteochondral fragments using new biodegradable magnesium pins in adolescents [J]. Cartilage, 2021, 13: 302S
|
16 |
Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
|
17 |
Xie K, Wang L, Guo Y, et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures [J]. J. Orthop. Translat., 2021, 27: 96
|
18 |
Wang X L, Wang C, Chu C L, et al. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications [J]. Bioact. Mater., 2024, 39: 74
doi: 10.1016/j.bioactmat.2024.05.024
pmid: 38783927
|
19 |
Han H S, Jun I, Seok H K, et al. Biodegradable magnesium alloys promote angio‐osteogenesis to enhance bone repair [J]. Adv. Sci., 2020, 7: 2000800
|
20 |
Tsakiris V, Tardei C, Clicinschi F M. Biodegradable Mg alloys for orthopedic implants—A review [J]. J. Magnes. Alloy., 2021, 9: 1884
doi: 10.1016/j.jma.2021.06.024
|
21 |
Krishnan R, Pandiaraj S, Muthusamy S, et al. Biodegradable magnesium metal matrix composites for biomedical implants: Synthesis, mechanical performance, and corrosion behavior—A review [J]. J. Mater. Res. Technol., 2022, 20: 650
|
22 |
Vignesh P, Ramanathan S, Ashokkumar M, et al. Microstructure, mechanical, and electrochemical corrosion performance of Ti/HA (hydroxyapatite) particles reinforced Mg-3Zn squeeze casted composites [J]. Inter. J. Metalcast., 2024, 18: 1348
|
23 |
Zhang Y Z, Dong B X, Wang C G, et al. Review on manufacturability and strengthening mechanisms of particulate reinforced Mg composites [J]. J. Mater. Res. Technol., 2024, 30: 3152
|
24 |
Akbarzadeh F Z, Sarraf M, Ghomi E R, et al. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications [J]. J. Magnes. Alloy., 2024, 12: 2569
|
25 |
Li X Q, Ma G J, Jin P P, et al. Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy [J]. J. Alloys Compd., 2019, 778: 309
|
26 |
Gu X N, Zhou W R, Zheng Y F, et al. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites [J]. Mater. Sci. Eng., 2010, C30: 827
|
27 |
Munir K, Wen C E, Li Y C. Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications [J]. J. Magnes. Alloy., 2020, 8: 269
|
28 |
Yu H, Zhou H P, Sun Y, et al. Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy [J]. Adv. Powder Technol., 2018, 29: 3241
|
29 |
Xu Y, Meng D W, Cheng Y Y, et al. Simultaneous improvement of the strength and plasticity for Ti-reinforced fine-grained magnesium matrix composites prepared by powder metallurgy [J]. Adv. Eng. Mater., 2024, 26: 2301349
|
30 |
Dinaharan I, Zhang S, Chen G Q, et al. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing [J]. Mater. Sci. Eng., 2020, A772: 138793
|
31 |
Radha R, Sreekanth D. Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications [J]. J. Magnes. Alloy., 2020, 8: 452
doi: 10.1016/j.jma.2019.05.010
|
32 |
Suslick K S, Price G J. Applications of ultrasound to materials chemistry [J]. Annu. Rev. Mater. Sci., 1999, 29: 295
|
33 |
Nie K B, Wang X J, Deng K K, et al. Magnesium matrix composite reinforced by nanoparticles—A review [J]. J. Magnes. Alloy., 2021, 9: 57
doi: 10.1016/j.jma.2020.08.018
|
34 |
Nie K B, Wang X J, Wu K, et al. Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration [J]. J. Alloys Compd., 2011, 509: 8664
|
35 |
Chen G, Song J F, Yang H, et al. The microstructures and mechanical properties of low-cost Ti particles reinforced AZ81 composites [J]. J. Mater. Res. Technol., 2024, 29: 3494
|
36 |
Lan J, Yang Y, Li X C. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method [J]. Mater. Sci. Eng., 2004, A386: 284
|
37 |
Xiang S L, Wang X J, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties [J]. Sci. Rep., 2016, 6: 38824
doi: 10.1038/srep38824
pmid: 27941839
|
38 |
Wang X J, Wang N Z, Wang L Y, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing [J]. Mater. Des., 2014, 57: 638
|
39 |
Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528: 539
|
40 |
Nie K B, Guo Y C, Deng K K, et al. High strength TiCp/Mg-Zn-Ca magnesium matrix nanocomposites with improved formability at low temperature [J]. J. Alloys Compd., 2019, 792: 267
|
41 |
Jayalakshmi S, Singh R A, Sankaranarayanan S, et al. Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique [J]. Mater Today: Proc., 2018, 5: 16280
|
42 |
Sekar P, Panigrahi S K. Understanding the corrosion and bio-corrosion behaviour of magnesium composites—A critical review [J]. J. Magnes. Alloy., 2024, 12: 890
|
43 |
Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183
|
44 |
Chen Y, Tekumalla S, Guo Y B, et al. Introducing Mg-4Zn-3Gd-1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel [J]. Sci. Rep., 2016, 6: 32395
doi: 10.1038/srep32395
pmid: 27572903
|
45 |
Pahaul A, Johanes M, Gupta M. A first-time addition of selenium to a Mg-based metal matrix composite for biomedical purposes [J]. J. Compos. Sci., 2024, 8: 81
|
46 |
Zeng Z R, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1511
|
47 |
Majumdar T, Eisenstein N, Frith J E, et al. Additive manufacturing of titanium alloys for orthopedic applications: A materials science viewpoint [J]. Adv. Eng. Mater., 2018, 20: 1800172
|
48 |
Wu C L, Zai W, Man H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability [J]. Mater. Today Commun., 2021, 26: 101922
|
49 |
Zhang X C, Shi H L, Wang X J, et al. Processing, microstructure, and mechanical behavior of AZ31 magnesium alloy fabricated by electron beam additive manufacturing [J]. J. Alloys Compd., 2023, 938: 168567.
|
50 |
Oropeza D, Hart A J. Reactive binder jet additive manufacturing for microstructural control and dimensional stability of ceramic materials [J]. Addit. Manuf., 2021, 48: 102448
|
51 |
Guo Y Y, Quan G F, Jiang Y L, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding [J]. J. Magnes. Alloy., 2021, 9: 192
|
52 |
Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
|
52 |
唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
|
53 |
Zhang C H, Li Z, Zhang J K, et al. Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives [J]. J. Magnes. Alloy., 2023, 11: 425
|
54 |
Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
|
54 |
彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
|
55 |
Wu J J, Wang L Z. Selective laser melting manufactured CNTs/AZ31B composites: Heat transfer and vaporized porosity evolution [J]. J. Mater. Res., 2018, 33: 2752
|
56 |
Shuai C J, Wang B, Yang Y W, et al. 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties [J]. Composites, 2019, 162B: 611
|
57 |
Tao J X, Zhao M C, Zhao Y C, et al. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting [J]. J. Magnes. Alloy., 2020, 8: 952
|
58 |
Salehi M, Kuah K X, Huang Z H, et al. Enhancing densification in binder jet additive manufacturing of magnesium via nanoparticles as sintering aids [J]. J. Manuf. Process., 2023, 99: 705
|
59 |
Dutta S, Gupta S, Roy M. Recent developments in magnesium metal-matrix composites for biomedical applications: A review [J]. ACS Biomater. Sci. Eng., 2020, 6: 4748
doi: 10.1021/acsbiomaterials.0c00678
pmid: 33455211
|
60 |
Shahin M, Munir K, Wen C E, et al. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives [J]. Acta Biomater., 2019, 96: 1
doi: S1742-7061(19)30417-9
pmid: 31181263
|
61 |
Nguyen Q B, Gupta M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates [J]. Compos. Sci. Technol., 2008, 68: 2185
|
62 |
Seshadhri V, Sarala R, Alagarsamy S V, et al. Mechanical, biodegradability and biocompatibility behaviour of seashell and ZrO2 particulates reinforced AZ31 Mg composites [J]. Ceram. Int., 2024, 50: 15613
|
63 |
Verma V, Singh S, Pal K. Exploring the potential of Mg-Zn-Mn-Ca/ZnO composites as a biodegradable alternative for fracture fixation: Microstructural, mechanical, and in-vitro biocompatibility analysis [J]. Compos. Struct., 2023, 323: 117431
|
64 |
Liu H Y, Han T L, Li Q K, et al. Novel microstructures inducing an excellent combination of strength and elongation in in-situ MgO/AZ31 composites [J]. Compos. Struct., 2022, 294: 115770
|
65 |
Meenashisundaram G K, Wang N Y, Maskomani S, et al. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg [J]. Mater. Sci. Eng., 2020, C108: 110478
|
66 |
Chen L, Xia H G, Chen P, et al. Corrosion behavior of embedded perforated biodegradable Mg/Fe composite plate [J]. J. Mater. Eng. Perform., 2022, 31: 9740
|
67 |
Wong W L E, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering [J]. Compos. Sci. Technol., 2007, 67: 1541
|
68 |
Khanra A K, Jung H C, Hong K S, et al. Comparative property study on extruded Mg-HAP and ZM61-HAP composites [J]. Mater. Sci. Eng., 2010, A527: 6283
|
69 |
Cui Z Q, Zhang Y K, Cheng Y L, et al. Microstructure, mechanical, corrosion properties and cytotoxicity of beta-calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering [J]. Mater. Sci. Eng., 2019, C99: 1035
|
70 |
Fathi M H, Meratian M, Razavi M. Novel magnesium-nanofluorapatite metal matrix nanocomposite with improved biodegradation behavior [J]. J. Biomed. Nanotechnol., 2011, 7: 441
pmid: 21830486
|
71 |
Abazari S, Shamsipur A, Bakhsheshi-Rad H R, et al. Functionalized carbon nanotube-encapsulated magnesium-based nanocomposites with outstanding mechanical and biological properties as load-bearing bone implants [J]. Mater. Des., 2022, 213: 110354
|
72 |
Rashad M, Pan F S, Tang A T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium [J]. J. Alloys Compd., 2014, 603: 111
|
73 |
Del Campo R, Savoini B, Muñoz A, et al. Mechanical properties and corrosion behavior of Mg-HAP composites [J]. J. Mech. Behav. Biomed. Mater., 2014, 39: 238
doi: 10.1016/j.jmbbm.2014.07.014
pmid: 25146678
|
74 |
Saberi A, Baltatu M S, Vizureanu P. Recent advances in magnesium-magnesium oxide nanoparticle composites for biomedical applications [J]. Bioengineering, 2024, 11: 508
|
75 |
Tang C K, Lyu S Y, Zhao Z H, et al. Effects of MgO nano particles on the mechanical properties and corrosion behavior of Mg-Zn-Ca alloy [J]. Mater. Chem. Phys., 2023, 297: 127380
|
76 |
Yang W J, Tong Q Y, He C X, et al. Mechanically propelled ion exchange regulates metal/bioceramic interface characteristics to improve the corrosion resistance of Mg composite for orthopedic applications [J]. Ceram. Int., 2024, 50: 23124
|
77 |
Khalajabadi S Z, Kadir M R A, Izman S, et al. Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications [J]. Mater. Des., 2015, 88: 1223
|
78 |
Esen Z, Öcal E B, Akkaya A, et al. Corrosion behaviours of Ti6Al4V-Mg/Mg-alloy composites [J]. Corros. Sci., 2020, 166: 108470
|
79 |
Qin J Y, Li X Q, Jin P P, et al. Microstructure and mechanical properties of carbon nanotubes (CNTs) reinforced AZ91 matrix composite [J]. Acta Metall. Sin., 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
|
79 |
覃嘉宇, 李小强, 金培鹏 等. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究 [J]. 金属学报, 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
|
80 |
Saberi A, Bakhsheshi-Rad H R, Karamian E, et al. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties [J]. J. Alloy. Compd., 2020, 821: 153379
|
81 |
Jaiswal S, Kumar R M, Gupta P, et al. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories [J]. J. Mech. Behav. Biomed. Mater., 2018, 78: 442
doi: S1751-6161(17)30518-0
pmid: 29232643
|
82 |
Yang Y W, Lu C F, Shen L D, et al. In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing [J]. J. Magnes. Alloy., 2023, 11: 629
|
83 |
Cui Z Q, Li W J, Cheng L X, et al. Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering [J]. Mater. Charact., 2019, 151: 620
|
84 |
Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites [J]. Biomaterials, 2007, 28: 2163
pmid: 17276507
|
85 |
Cheng P F, Han P, Zhao C L, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF [J]. Biomaterials, 2016, 81: 14
doi: S0142-9612(15)00981-3
pmid: 26713681
|
86 |
Wang J L, Xu J K, Song B, et al. Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits [J]. Acta Biomater., 2017, 63: 393
doi: S1742-7061(17)30582-2
pmid: 28919510
|
87 |
Han P, Cheng P F, Zhang S X, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model [J]. Biomaterials, 2015, 64: 57
|
88 |
Chaya A, Yoshizawa S, Verdelis K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing [J]. Acta Biomater., 2015, 18: 262
doi: 10.1016/j.actbio.2015.02.010
pmid: 25712384
|
89 |
Jähn K, Saito H, Taipaleenmäki H, et al. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice [J]. Acta Biomater., 2016, 36: 350
doi: 10.1016/j.actbio.2016.03.041
pmid: 27039975
|
90 |
Farraro K F, Sasaki N, Woo S L Y, et al. Magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint [J]. J. Orthop. Res., 2016, 34: 2001
doi: 10.1002/jor.23210
pmid: 26916011
|
91 |
Zhang Z Z, Zhou Y F, Li W P, et al. Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: A proof-of-concept study [J]. Am. J. Sports Med., 2019, 47: 954
|
92 |
Zhang B X, Zhang W, Zhang F, et al. Degradable magnesium alloy suture promotes fibrocartilaginous interface regeneration in a rat rotator cuff transosseous repair model [J]. J. Magnes. Alloy., 2024, 12: 384
|
93 |
Chen Y D, Sun Y, Wu X H, et al. Rotator cuff repair with biodegradable high-purity magnesium suture anchor in sheep model [J]. J. Orthop. Translat., 2022, 35: 62
|
94 |
Hamushan M, Cai W J, Zhang Y B, et al. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling [J]. Bioact. Mater., 2021, 6: 1563
doi: 10.1016/j.bioactmat.2020.11.008
pmid: 33294734
|
95 |
Gonzalez J, Hou R Q, Nidadavolu E P S, et al. Magnesium degradation under physiological conditions—Best practice [J]. Bioact. Mater., 2018, 3: 174
doi: 10.1016/j.bioactmat.2018.01.003
pmid: 29744455
|
96 |
Wang J L, Xu J K, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics—A general review and perspectives [J]. Adv. Sci., 2020, 7: 1902443
|
97 |
Grünewald T A, Rennhofer H, Hesse B, et al. Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone [J]. Biomaterials, 2016, 76: 250
doi: 10.1016/j.biomaterials.2015.10.054
pmid: 26546917
|
98 |
Guo J D, Li L, Shi Y M, et al. Hydrogen water consumption prevents osteopenia in ovariectomized rats [J]. Br. J. Pharmacol., 2013, 168: 1412
|
99 |
Noviana D, Paramitha D, Ulum M F, et al. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats [J]. J. Orthop. Translat., 2016, 5: 9
|
100 |
Maradze D, Musson D, Zheng Y F, et al. High magnesium corrosion rate has an effect on osteoclast and mesenchymal stem cell role during bone remodelling [J]. Sci. Rep., 2018, 8: 10003
doi: 10.1038/s41598-018-28476-w
pmid: 29968794
|
101 |
Zhang Y F, Xu J K, Ruan Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats [J]. Nat. Med., 2016, 22: 1160
doi: 10.1038/nm.4162
pmid: 27571347
|
102 |
Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation [J]. Acta Biomater., 2014, 10: 2834
doi: 10.1016/j.actbio.2014.02.002
pmid: 24512978
|
103 |
Hung C C, Chaya A, Liu K, et al. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway [J]. Acta Biomater., 2019, 98: 246
|
104 |
Wang W Z, Wang L, Zhang B Q, et al. 3D printing of personalized magnesium composite bone tissue engineering scaffold for bone and angiogenesis regeneration [J]. Chem. Eng. J., 2024, 484: 149444
|
105 |
Zhai Z J, Qu X H, Li H W, et al. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling [J]. Biomaterials, 2014, 35: 6299
doi: 10.1016/j.biomaterials.2014.04.044
pmid: 24816285
|
106 |
Qiao W, Wong K H M, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration [J]. Nat. Commun., 2021, 12: 2885
doi: 10.1038/s41467-021-23005-2
pmid: 34001887
|
107 |
Liang L X, Lin Z J, Duan Z Q, et al. Enhancing the immunomodulatory osteogenic properties of Ti-Mg alloy by Mg2+-containing nanostructures [J]. Regen. Biomater., 2024, 11: rbae104
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|