Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 455-474    DOI: 10.11900/0412.1961.2024.00362
  综述 本期目录 | 过刊浏览 |
可降解镁基复合材料的制备及其在骨科领域的研究进展
欧阳思慧1,2,3, 佘加1,2,3, 陈先华1,2(), 潘复生1,2
1 重庆大学 国家镁合金材料工程技术研究中心 重庆 400044
2 重庆大学 材料科学与工程学院 重庆 400044
3 兰溪镁材料研究院 兰溪 321100
Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications
OUYANG Sihui1,2,3, SHE Jia1,2,3, CHEN Xianhua1,2(), PAN Fusheng1,2
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3 Lanxi Magnesium Materials Research Institute, Lanxi 321100, China
引用本文:

欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
Sihui OUYANG, Jia SHE, Xianhua CHEN, Fusheng PAN. Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications[J]. Acta Metall Sin, 2025, 61(3): 455-474.

全文: PDF(5436 KB)   HTML
摘要: 

可降解镁基材料因与骨相匹配的弹性模量和优良的成骨性能,成为21世纪极具前景的骨科植入材料。本工作总结了镁基复合材料在骨修复中的应用现状和发展趋势。首先,介绍了镁基复合材料的制备工艺及其优/缺点,着重分析了增强体选择对力学性能和降解行为的影响,并阐述了镁基复合材料在骨折固定、骨缺损修复等领域所取得的临床前研究进展,证实了其生物活性和临床安全性。随后,讨论了镁基复合材料在降解过程中对干细胞成骨分化的影响及相关分子机制。最后,结合现有临床前研究成果,归纳了镁基复合材料在骨修复应用中面临的挑战,并对其未来发展方向进行展望。

关键词 骨科应用镁基复合材料增强体降解行为力学性能    
Abstract

Biodegradable Mg-based materials have emerged as a promising class of orthopedic implants in the 21st century, owing to their excellent osteogenic properties and an elastic modulus similar to that of cortical bone. This review summarizes the current applications and development trends of Mgbased composites in bone repair. First, the fabrication methods of Mg-based composites, along with their advantages and disadvantages, are discussed. Second, the impact of reinforcement on the mechanical properties and degradation behavior of these composites is examined. Third, preclinical studies on the use of Mg-based composites in fracture fixation and bone defect repair are reviewed, confirming their bioactivity and clinical safety. Fourth, the effects of the degradation behavior of Mg-based composites on stem cell osteogenic differentiation and the related molecular mechanisms are explored. Finally, the challenges of applying Mg-based composites for bone repair based on existing preclinical studies are outlined, and potential future advancements are proposed.

Key wordsorthopedic applications    Mg-based composites    reinforcement    degradation behavior    mechanical property
收稿日期: 2024-10-29     
ZTFLH:  TG146.2  
基金资助:国家杰出青年科学基金项目(52225101);国家自然科学基金项目(52301132);中央高校基本科研业务费项目(2023CDJYXTD-002)
通讯作者: 陈先华,xhchen@cqu.edu.cn,主要从事新型高性能镁基材料及其制备技术研究
Corresponding author: CHEN Xianhua, professor, Tel: (023)65102633, E-mail: xhchen@cqu.edu.cn
作者简介: 欧阳思慧,女,1993年生,博士
图1  粉末冶金法制备镁基复合材料的流程示意图及显微组织[25,29]
图2  超声辅助搅拌铸造法制备镁基复合材料实验装置示意图和流程及显微组织和力学性能[33,37,39,40]
图3  分离熔体沉积法制备镁基复合材料示意图[42]及镁基复合材料显微组织和拉伸性能[44]
图4  增材制造技术制备镁基复合材料实验装备示意图[48~51]
ClassificationReinfor-cementMechanical propertyBiological propertyApplicationRef.
Metal oxide

Al2O3

E = 50 GPa, σys = 176 MPa, σUCS = 486 MPa, ε = 14.0%

Improves protein adsorption,

cell adhesion, and proliferation

Bone screws, bone plates, and knee prosthesis

[61]

ZrO2

σys = 160 MPa, σUTS = 328 MPa,

ε = 11.5%

Bio-inert and nontoxic to fibroblast

and blood cells, improves cell

viability, and greater bone stability

Artificial knee, femoral head, and bone screw

[62]

ZnO

σys = 89 MPa, σUTS = 94 MPa,

ε = 1.7%

Cytocompatibility and hemocompatibility

Bone screws,

bone plates

[63]

MgO

σys = 281 MPa, σUTS = 386 MPa, ε = 8.5%

Biodegradability, bioactivity, and

good antibacterial properties

Prevent dental and orthopaedic infections

[64]

MetalTiσys = 134 MPa, σUCS = 418 MPa, ε = 51.0%

Biocompatibility and good

antibacterial properties

Bone tissue and joint replacements[65]
FeσUTS = 178 MPa, ε = 1.9%

Biodegradability and good

antibacterial properties

Bone graft[66]

Cu

σys = 237 MPa, σUTS = 286 MPa, ε = 5.4%

Good antibacterial properties

Prevent dental and orthopaedic infections

[67]

Calcium

HA

σys = 245 MPa, σUCS = 388 MPa,

ε = 11.0%

Nontoxic and bioactive, excellent

cell proliferation and osteoblastic differentiation, and reduces the

release of Mg2+

Bone joint, bone screw, and pins

[68]

phosphate
β-TCPσUCS = 402 MPa, ε = 12.0%Enhance bone adhesion and bone growthBone pin, bone screw[69]

CPP

E = 48 GPa, σys = 320 MPa, σUTS = 337 MPaInduce osteoblastic differentiation, do not cause inflammation, higher protein adsorption, and nontoxic to tissuesBone tissue and joint replacements, dental implant

[60]

FAσys = 107 MPa, σUCS = 123 MPa, ε = 5.0%Enhance cell viability and osteoconductivityBone graft[70]
GraphiteCNTsσys = 245 MPa, σUCS = 390 MPa, ε = 15.7%Biocompatible even in blood contact, no tissue reaction, and nontoxic to cellsBone screw, bone plates[71]
GNPsσys = 230 MPa, σUTS = 407 MPa, ε = 13.0%Hemocompatibility, cytocompatibility, and good antibacterial propertiesBone screw, bone plates[72]
表1  医用镁基复合材料中典型增强体类别及其力学性能和生物学性能[60~72]
图5  生物医用镁基复合材料的显微组织、腐蚀行为和力学性能[69,71,77]
图6  镁基复合材料的体外细胞测试[69,81,82]
图7  医用镁基材料的体内动物实验[85~93]
图8  生物医用镁基复合材料的降解行为及相关成骨机制[95,96,100~102]
1 Ledet E H, Liddle B, Kradinova K, et al. Smart implants in orthopedic surgery, improving patient outcomes: A review [J]. Innov. Entrep. Health, 2018, 5: 41
2 Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective [J]. Biomaterials, 1998, 19: 1621
doi: 10.1016/s0142-9612(97)00146-4 pmid: 9839998
3 Minetto M A, Giannini A, McConnell R, et al. Common musculoskeletal disorders in the elderly: The star triad [J]. J. Clin. Med., 2020, 9: 1216
4 Bairagi D, Mandal S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects [J]. J. Magnes. Alloy., 2022, 10: 627
5 Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications [J]. Mater. Sci. Eng., 2019, C102: 844
6 Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
6 李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
7 Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Mater. Sci. Eng., 2016, C68: 948
8 Azadani M N, Zahedi A, Bowoto O K, et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications [J]. Prog. Biomater., 2022, 11: 1
doi: 10.1007/s40204-022-00182-x pmid: 35239157
9 Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
9 曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
10 Payr E. Beitrage zur technik der blutgesfass und nervennaht nebst mittheilungen die verwendung eines resorbierharen metalles in der chirurgie [J]. Arch. Klin. Chir., 1900, 62: 67
11 Costello R B, Elin R J, Rosanoff A, et al. Perspective: The case for an evidence-based reference interval for serum magnesium: The time has come [J]. Adv. Nutr., 2016, 7: 977
doi: 10.3945/an.116.012765 pmid: 28140318
12 Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study [J]. BioMed. Eng. Online, 2013, 12: 62
doi: 10.1186/1475-925X-12-62 pmid: 23819489
13 Lee J W, Han H S, Han K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy [J]. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 716
14 Delsmann M M, Stürznickel J, Kertai M, et al. Radiolucent zones of biodegradable magnesium-based screws in children and adolescents—A radiographic analysis [J]. Arch. Orthop. Trauma Surg., 2023, 143: 2297
15 Jungesblut O D, Moritz M, Spiro A S, et al. Fixation of unstable osteochondritis dissecans lesions and displaced osteochondral fragments using new biodegradable magnesium pins in adolescents [J]. Cartilage, 2021, 13: 302S
16 Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
17 Xie K, Wang L, Guo Y, et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures [J]. J. Orthop. Translat., 2021, 27: 96
18 Wang X L, Wang C, Chu C L, et al. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications [J]. Bioact. Mater., 2024, 39: 74
doi: 10.1016/j.bioactmat.2024.05.024 pmid: 38783927
19 Han H S, Jun I, Seok H K, et al. Biodegradable magnesium alloys promote angio‐osteogenesis to enhance bone repair [J]. Adv. Sci., 2020, 7: 2000800
20 Tsakiris V, Tardei C, Clicinschi F M. Biodegradable Mg alloys for orthopedic implants—A review [J]. J. Magnes. Alloy., 2021, 9: 1884
doi: 10.1016/j.jma.2021.06.024
21 Krishnan R, Pandiaraj S, Muthusamy S, et al. Biodegradable magnesium metal matrix composites for biomedical implants: Synthesis, mechanical performance, and corrosion behavior—A review [J]. J. Mater. Res. Technol., 2022, 20: 650
22 Vignesh P, Ramanathan S, Ashokkumar M, et al. Microstructure, mechanical, and electrochemical corrosion performance of Ti/HA (hydroxyapatite) particles reinforced Mg-3Zn squeeze casted composites [J]. Inter. J. Metalcast., 2024, 18: 1348
23 Zhang Y Z, Dong B X, Wang C G, et al. Review on manufacturability and strengthening mechanisms of particulate reinforced Mg composites [J]. J. Mater. Res. Technol., 2024, 30: 3152
24 Akbarzadeh F Z, Sarraf M, Ghomi E R, et al. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications [J]. J. Magnes. Alloy., 2024, 12: 2569
25 Li X Q, Ma G J, Jin P P, et al. Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy [J]. J. Alloys Compd., 2019, 778: 309
26 Gu X N, Zhou W R, Zheng Y F, et al. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites [J]. Mater. Sci. Eng., 2010, C30: 827
27 Munir K, Wen C E, Li Y C. Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications [J]. J. Magnes. Alloy., 2020, 8: 269
28 Yu H, Zhou H P, Sun Y, et al. Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy [J]. Adv. Powder Technol., 2018, 29: 3241
29 Xu Y, Meng D W, Cheng Y Y, et al. Simultaneous improvement of the strength and plasticity for Ti-reinforced fine-grained magnesium matrix composites prepared by powder metallurgy [J]. Adv. Eng. Mater., 2024, 26: 2301349
30 Dinaharan I, Zhang S, Chen G Q, et al. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing [J]. Mater. Sci. Eng., 2020, A772: 138793
31 Radha R, Sreekanth D. Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications [J]. J. Magnes. Alloy., 2020, 8: 452
doi: 10.1016/j.jma.2019.05.010
32 Suslick K S, Price G J. Applications of ultrasound to materials chemistry [J]. Annu. Rev. Mater. Sci., 1999, 29: 295
33 Nie K B, Wang X J, Deng K K, et al. Magnesium matrix composite reinforced by nanoparticles—A review [J]. J. Magnes. Alloy., 2021, 9: 57
doi: 10.1016/j.jma.2020.08.018
34 Nie K B, Wang X J, Wu K, et al. Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration [J]. J. Alloys Compd., 2011, 509: 8664
35 Chen G, Song J F, Yang H, et al. The microstructures and mechanical properties of low-cost Ti particles reinforced AZ81 composites [J]. J. Mater. Res. Technol., 2024, 29: 3494
36 Lan J, Yang Y, Li X C. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method [J]. Mater. Sci. Eng., 2004, A386: 284
37 Xiang S L, Wang X J, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties [J]. Sci. Rep., 2016, 6: 38824
doi: 10.1038/srep38824 pmid: 27941839
38 Wang X J, Wang N Z, Wang L Y, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing [J]. Mater. Des., 2014, 57: 638
39 Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528: 539
40 Nie K B, Guo Y C, Deng K K, et al. High strength TiCp/Mg-Zn-Ca magnesium matrix nanocomposites with improved formability at low temperature [J]. J. Alloys Compd., 2019, 792: 267
41 Jayalakshmi S, Singh R A, Sankaranarayanan S, et al. Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique [J]. Mater Today: Proc., 2018, 5: 16280
42 Sekar P, Panigrahi S K. Understanding the corrosion and bio-corrosion behaviour of magnesium composites—A critical review [J]. J. Magnes. Alloy., 2024, 12: 890
43 Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183
44 Chen Y, Tekumalla S, Guo Y B, et al. Introducing Mg-4Zn-3Gd-1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel [J]. Sci. Rep., 2016, 6: 32395
doi: 10.1038/srep32395 pmid: 27572903
45 Pahaul A, Johanes M, Gupta M. A first-time addition of selenium to a Mg-based metal matrix composite for biomedical purposes [J]. J. Compos. Sci., 2024, 8: 81
46 Zeng Z R, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1511
47 Majumdar T, Eisenstein N, Frith J E, et al. Additive manufacturing of titanium alloys for orthopedic applications: A materials science viewpoint [J]. Adv. Eng. Mater., 2018, 20: 1800172
48 Wu C L, Zai W, Man H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability [J]. Mater. Today Commun., 2021, 26: 101922
49 Zhang X C, Shi H L, Wang X J, et al. Processing, microstructure, and mechanical behavior of AZ31 magnesium alloy fabricated by electron beam additive manufacturing [J]. J. Alloys Compd., 2023, 938: 168567.
50 Oropeza D, Hart A J. Reactive binder jet additive manufacturing for microstructural control and dimensional stability of ceramic materials [J]. Addit. Manuf., 2021, 48: 102448
51 Guo Y Y, Quan G F, Jiang Y L, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding [J]. J. Magnes. Alloy., 2021, 9: 192
52 Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
52 唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
53 Zhang C H, Li Z, Zhang J K, et al. Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives [J]. J. Magnes. Alloy., 2023, 11: 425
54 Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
54 彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
55 Wu J J, Wang L Z. Selective laser melting manufactured CNTs/AZ31B composites: Heat transfer and vaporized porosity evolution [J]. J. Mater. Res., 2018, 33: 2752
56 Shuai C J, Wang B, Yang Y W, et al. 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties [J]. Composites, 2019, 162B: 611
57 Tao J X, Zhao M C, Zhao Y C, et al. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting [J]. J. Magnes. Alloy., 2020, 8: 952
58 Salehi M, Kuah K X, Huang Z H, et al. Enhancing densification in binder jet additive manufacturing of magnesium via nanoparticles as sintering aids [J]. J. Manuf. Process., 2023, 99: 705
59 Dutta S, Gupta S, Roy M. Recent developments in magnesium metal-matrix composites for biomedical applications: A review [J]. ACS Biomater. Sci. Eng., 2020, 6: 4748
doi: 10.1021/acsbiomaterials.0c00678 pmid: 33455211
60 Shahin M, Munir K, Wen C E, et al. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives [J]. Acta Biomater., 2019, 96: 1
doi: S1742-7061(19)30417-9 pmid: 31181263
61 Nguyen Q B, Gupta M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates [J]. Compos. Sci. Technol., 2008, 68: 2185
62 Seshadhri V, Sarala R, Alagarsamy S V, et al. Mechanical, biodegradability and biocompatibility behaviour of seashell and ZrO2 particulates reinforced AZ31 Mg composites [J]. Ceram. Int., 2024, 50: 15613
63 Verma V, Singh S, Pal K. Exploring the potential of Mg-Zn-Mn-Ca/ZnO composites as a biodegradable alternative for fracture fixation: Microstructural, mechanical, and in-vitro biocompatibility analysis [J]. Compos. Struct., 2023, 323: 117431
64 Liu H Y, Han T L, Li Q K, et al. Novel microstructures inducing an excellent combination of strength and elongation in in-situ MgO/AZ31 composites [J]. Compos. Struct., 2022, 294: 115770
65 Meenashisundaram G K, Wang N Y, Maskomani S, et al. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg [J]. Mater. Sci. Eng., 2020, C108: 110478
66 Chen L, Xia H G, Chen P, et al. Corrosion behavior of embedded perforated biodegradable Mg/Fe composite plate [J]. J. Mater. Eng. Perform., 2022, 31: 9740
67 Wong W L E, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering [J]. Compos. Sci. Technol., 2007, 67: 1541
68 Khanra A K, Jung H C, Hong K S, et al. Comparative property study on extruded Mg-HAP and ZM61-HAP composites [J]. Mater. Sci. Eng., 2010, A527: 6283
69 Cui Z Q, Zhang Y K, Cheng Y L, et al. Microstructure, mechanical, corrosion properties and cytotoxicity of beta-calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering [J]. Mater. Sci. Eng., 2019, C99: 1035
70 Fathi M H, Meratian M, Razavi M. Novel magnesium-nanofluorapatite metal matrix nanocomposite with improved biodegradation behavior [J]. J. Biomed. Nanotechnol., 2011, 7: 441
pmid: 21830486
71 Abazari S, Shamsipur A, Bakhsheshi-Rad H R, et al. Functionalized carbon nanotube-encapsulated magnesium-based nanocomposites with outstanding mechanical and biological properties as load-bearing bone implants [J]. Mater. Des., 2022, 213: 110354
72 Rashad M, Pan F S, Tang A T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium [J]. J. Alloys Compd., 2014, 603: 111
73 Del Campo R, Savoini B, Muñoz A, et al. Mechanical properties and corrosion behavior of Mg-HAP composites [J]. J. Mech. Behav. Biomed. Mater., 2014, 39: 238
doi: 10.1016/j.jmbbm.2014.07.014 pmid: 25146678
74 Saberi A, Baltatu M S, Vizureanu P. Recent advances in magnesium-magnesium oxide nanoparticle composites for biomedical applications [J]. Bioengineering, 2024, 11: 508
75 Tang C K, Lyu S Y, Zhao Z H, et al. Effects of MgO nano particles on the mechanical properties and corrosion behavior of Mg-Zn-Ca alloy [J]. Mater. Chem. Phys., 2023, 297: 127380
76 Yang W J, Tong Q Y, He C X, et al. Mechanically propelled ion exchange regulates metal/bioceramic interface characteristics to improve the corrosion resistance of Mg composite for orthopedic applications [J]. Ceram. Int., 2024, 50: 23124
77 Khalajabadi S Z, Kadir M R A, Izman S, et al. Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications [J]. Mater. Des., 2015, 88: 1223
78 Esen Z, Öcal E B, Akkaya A, et al. Corrosion behaviours of Ti6Al4V-Mg/Mg-alloy composites [J]. Corros. Sci., 2020, 166: 108470
79 Qin J Y, Li X Q, Jin P P, et al. Microstructure and mechanical properties of carbon nanotubes (CNTs) reinforced AZ91 matrix composite [J]. Acta Metall. Sin., 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
79 覃嘉宇, 李小强, 金培鹏 等. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究 [J]. 金属学报, 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
80 Saberi A, Bakhsheshi-Rad H R, Karamian E, et al. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties [J]. J. Alloy. Compd., 2020, 821: 153379
81 Jaiswal S, Kumar R M, Gupta P, et al. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories [J]. J. Mech. Behav. Biomed. Mater., 2018, 78: 442
doi: S1751-6161(17)30518-0 pmid: 29232643
82 Yang Y W, Lu C F, Shen L D, et al. In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing [J]. J. Magnes. Alloy., 2023, 11: 629
83 Cui Z Q, Li W J, Cheng L X, et al. Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering [J]. Mater. Charact., 2019, 151: 620
84 Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites [J]. Biomaterials, 2007, 28: 2163
pmid: 17276507
85 Cheng P F, Han P, Zhao C L, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF [J]. Biomaterials, 2016, 81: 14
doi: S0142-9612(15)00981-3 pmid: 26713681
86 Wang J L, Xu J K, Song B, et al. Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits [J]. Acta Biomater., 2017, 63: 393
doi: S1742-7061(17)30582-2 pmid: 28919510
87 Han P, Cheng P F, Zhang S X, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model [J]. Biomaterials, 2015, 64: 57
88 Chaya A, Yoshizawa S, Verdelis K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing [J]. Acta Biomater., 2015, 18: 262
doi: 10.1016/j.actbio.2015.02.010 pmid: 25712384
89 Jähn K, Saito H, Taipaleenmäki H, et al. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice [J]. Acta Biomater., 2016, 36: 350
doi: 10.1016/j.actbio.2016.03.041 pmid: 27039975
90 Farraro K F, Sasaki N, Woo S L Y, et al. Magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint [J]. J. Orthop. Res., 2016, 34: 2001
doi: 10.1002/jor.23210 pmid: 26916011
91 Zhang Z Z, Zhou Y F, Li W P, et al. Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: A proof-of-concept study [J]. Am. J. Sports Med., 2019, 47: 954
92 Zhang B X, Zhang W, Zhang F, et al. Degradable magnesium alloy suture promotes fibrocartilaginous interface regeneration in a rat rotator cuff transosseous repair model [J]. J. Magnes. Alloy., 2024, 12: 384
93 Chen Y D, Sun Y, Wu X H, et al. Rotator cuff repair with biodegradable high-purity magnesium suture anchor in sheep model [J]. J. Orthop. Translat., 2022, 35: 62
94 Hamushan M, Cai W J, Zhang Y B, et al. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling [J]. Bioact. Mater., 2021, 6: 1563
doi: 10.1016/j.bioactmat.2020.11.008 pmid: 33294734
95 Gonzalez J, Hou R Q, Nidadavolu E P S, et al. Magnesium degradation under physiological conditions—Best practice [J]. Bioact. Mater., 2018, 3: 174
doi: 10.1016/j.bioactmat.2018.01.003 pmid: 29744455
96 Wang J L, Xu J K, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics—A general review and perspectives [J]. Adv. Sci., 2020, 7: 1902443
97 Grünewald T A, Rennhofer H, Hesse B, et al. Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone [J]. Biomaterials, 2016, 76: 250
doi: 10.1016/j.biomaterials.2015.10.054 pmid: 26546917
98 Guo J D, Li L, Shi Y M, et al. Hydrogen water consumption prevents osteopenia in ovariectomized rats [J]. Br. J. Pharmacol., 2013, 168: 1412
99 Noviana D, Paramitha D, Ulum M F, et al. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats [J]. J. Orthop. Translat., 2016, 5: 9
100 Maradze D, Musson D, Zheng Y F, et al. High magnesium corrosion rate has an effect on osteoclast and mesenchymal stem cell role during bone remodelling [J]. Sci. Rep., 2018, 8: 10003
doi: 10.1038/s41598-018-28476-w pmid: 29968794
101 Zhang Y F, Xu J K, Ruan Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats [J]. Nat. Med., 2016, 22: 1160
doi: 10.1038/nm.4162 pmid: 27571347
102 Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation [J]. Acta Biomater., 2014, 10: 2834
doi: 10.1016/j.actbio.2014.02.002 pmid: 24512978
103 Hung C C, Chaya A, Liu K, et al. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway [J]. Acta Biomater., 2019, 98: 246
104 Wang W Z, Wang L, Zhang B Q, et al. 3D printing of personalized magnesium composite bone tissue engineering scaffold for bone and angiogenesis regeneration [J]. Chem. Eng. J., 2024, 484: 149444
105 Zhai Z J, Qu X H, Li H W, et al. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling [J]. Biomaterials, 2014, 35: 6299
doi: 10.1016/j.biomaterials.2014.04.044 pmid: 24816285
106 Qiao W, Wong K H M, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration [J]. Nat. Commun., 2021, 12: 2885
doi: 10.1038/s41467-021-23005-2 pmid: 34001887
107 Liang L X, Lin Z J, Duan Z Q, et al. Enhancing the immunomodulatory osteogenic properties of Ti-Mg alloy by Mg2+-containing nanostructures [J]. Regen. Biomater., 2024, 11: rbae104
[1] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[2] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[3] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[4] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[5] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[6] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[7] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[8] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[9] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[10] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[11] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[12] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[13] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[14] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[15] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.