|
|
高性能超高压镁合金研究进展 |
付辉1, 孙勇2, 邹国栋2, 张帆1, 杨许生3, 张涛1, 彭秋明2( ) |
1 广州大学 物理与材料科学学院 广州 510006 2 燕山大学 亚稳材料制备与技术国家重点实验室 秦皇岛 066004 3 香港理工大学 工业及系统工程学系 香港 999077 |
|
Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys |
FU Hui1, SUN Yong2, ZOU Guodong2, ZHANG Fan1, YANG Xusheng3, ZHANG Tao1, PENG Qiuming2( ) |
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China 2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 3 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China |
引用本文:
付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
Hui FU,
Yong SUN,
Guodong ZOU,
Fan ZHANG,
Xusheng YANG,
Tao ZHANG,
Qiuming PENG.
Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys[J]. Acta Metall Sin, 2025, 61(3): 475-487.
1 |
Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
|
1 |
彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
|
2 |
Peng X, Liu W C, Wu G H. Strengthening-toughening methods and mechanisms of Mg-Li alloy: A review [J]. Rare Met., 2022, 41: 1176
|
3 |
Nie J F, Shin K S, Zeng Z R. Microstructure, deformation, and property of wrought magnesium alloys [J]. Metall. Mater. Trans., 2020, 51A: 6045
|
4 |
Yue Y H, Gao Y F, Hu W T, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582: 370
|
5 |
Ge B C, Fu H, Deng K K, et al. Unique strengthening mechanisms of ultrahigh pressure Mg alloys [J]. Bioact. Mater., 2018, 3: 250
doi: 10.1016/j.bioactmat.2017.11.009
pmid: 29744464
|
6 |
Fu H, Ge B C, Xin Y C, et al. Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins [J]. Nano Lett., 2017, 17: 6117
doi: 10.1021/acs.nanolett.7b02641
pmid: 28857573
|
7 |
Wang L, Lin X P, Xu C, et al. The microstructure and the mechanical property of AZ91D solidified under GPa-grade high-pressure [J]. Mater. Sci. Technol., 2019, 35: 1690
|
8 |
Peng Q M, Sun Y, Wang J, et al. Structural characteristics of $\left\{ 10\bar{1}1 \right\}$ contraction twin-twin interaction in magnesium [J]. Acta Mater., 2020, 192: 60
|
9 |
Zhao S S, Peng Q M, Li H, et al. Effects of super-high pressure on microstructures, nano-mechanical behaviors and corrosion properties of Mg-Al alloys [J]. J. Alloys Compd., 2014, 584: 56
|
10 |
Fu H, Peng Q M, Guo J X, et al. High-pressure synthesis of a nanoscale YB12 strengthening precipitate in Mg-Y alloys [J]. Scr. Mater., 2014, 76: 33
|
11 |
Feng J W, Li H N, Deng K K, et al. Unique corrosion resistance of ultrahigh pressure Mg-25Al binary alloys [J]. Corros. Sci., 2018, 143: 229
|
12 |
Feng J W, Zhang H, Zhang L, et al. Microstructure and corrosion properties for ultrahigh-pressure Mg-Li alloys [J]. Corros. Sci., 2022, 206: 110519
|
13 |
Yang H, Ding Z, Li Y T, et al. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage [J]. Rare Met., 2023, 42: 2906
|
14 |
Ouyang L Z, Liu F, Wang H, et al. Magnesium-based hydrogen storage compounds: A review [J]. J. Alloys Compd., 2020, 832: 154865
|
15 |
Wu C, Yang S Q, Li Y, et al. Microstructural evolution and electrochemical properties of the ultra-high pressure treated La0.70Mg0.30Ni3.3 hydrogen storage alloy [J]. J. Alloys Compd., 2016, 665: 231
|
16 |
Pimenta Martins L G, Comin R, Matos M J S, et al. High-pressure studies of atomically thin van der Waals materials [J]. Appl. Phys. Rev., 2023, 10: 011313
|
17 |
Tang Y, Wang H K, Ouyang X P, et al. Overcoming strength-ductility tradeoff with high pressure thermal treatment [J]. Nat. Commun., 2024, 15: 3932
doi: 10.1038/s41467-024-48435-6
pmid: 38729936
|
18 |
Bridgman P W. Recent work in the field of high pressures [J]. Rev. Mod. Phys., 1946, 18: 1
|
19 |
Schilling J S. The use of high pressure in basic and materials science [J]. J. Phys. Chem. Solids, 1998, 59: 553
|
20 |
Wu B L, Chen B, Wang C W, et al. Corrosion behavior of a novel Mg-13Li-X alloy with different grain sizes by rapid solidification rate [J]. Rare Met., 2022, 41: 3197
|
21 |
Sobczak J J, Drenchev L, Asthana R. Effect of pressure on solidification of metallic materials [J]. Int. J. Cast Met. Res., 2012, 25: 1
|
22 |
Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
|
23 |
Lin X P, Dai P L, Xu C, et al. Solute redistribution and mechanism of structure refinement of Mg-Al alloy during solidification under high pressure [J]. J. Alloys Compd., 2022, 910: 164777
|
24 |
Peng X, Liu W C, Wu G H, et al. Plastic deformation and heat treatment of Mg-Li alloys: A review [J]. J. Mater. Sci. Technol., 2022, 99: 193
doi: 10.1016/j.jmst.2021.04.072
|
25 |
Ge B C, Yang M, Zu Q, et al. Lithium cluster segregation in coherent contraction twin boundaries of magnesium alloys [J]. Acta Mater., 2020, 201: 477
|
26 |
Peng Q M, Ge B C, Fu H, et al. Nanoscale coherent interface strengthening of Mg alloys [J]. Nanoscale, 2018, 10: 18028
doi: 10.1039/c8nr04805c
pmid: 30229782
|
27 |
Peng Q M, Sun Y, Ge B C, et al. Interactive contraction nanotwins-stacking faults strengthening mechanism of Mg alloys [J]. Acta Mater., 2019, 169: 36
|
28 |
Zhang S, Sun Y, Wu R Z, et al. Coherent interface strengthening of ultrahigh pressure heat-treated Mg-Li-Y alloys [J]. J. Mater. Sci. Technol., 2020, 51: 79
doi: 10.1016/j.jmst.2020.02.039
|
29 |
Wang D, Huang P Z, Wu R Z, et al. Synergistically improved strength and damping capacity of Mg-Li-Y-Er-Zn-Zr alloy by ultra-high pressure treatment [J]. Mater. Sci. Eng, 2024, A915: 147205
|
30 |
Meier J M, Caris J, Luo A A. Towards high strength cast Mg-RE based alloys: Phase diagrams and strengthening mechanisms [J]. J. Magnes. Alloy., 2022, 10: 1401
|
31 |
Zhao H G, Pan J L, Li H, et al. Spherical strengthening precipitate in a Mg-10wt%Y alloy with superhigh pressure aging [J]. Mater. Lett., 2013, 96: 16
|
32 |
Fu H, Li H, Fang D Q, et al. High ductility of a bi-modal Mg-7wt.%Y alloy at low temperature prepared by high pressure boriding and semi-solid extrusion [J]. Mater. Des., 2016, 92: 240
|
33 |
Fu H, Liu N, Zhang Z W, et al. Effect of super-high pressure on microstructure and mechanical properties of Mg97Zn1Y2 alloys [J]. J. Magnes. Alloy., 2016, 4: 302
|
34 |
Matsushita M, Masuda K, Waki R, et al. Ultrafine spherulite Mg alloy with high yield strength [J]. J. Alloys Compd., 2019, 784: 1284
|
35 |
Matsushita M, Sakata Y, Senzaki T, et al. Phase relations among D03, α-Mg, and long-period stacking orders in Mg85Zn6Y9 alloy under 3 GPa [J]. Mater. Trans., 2015, 56: 910
|
36 |
Matsushita M, Yamamoto S, Nishiyama N, et al. D03 + hcp mixed phase with nanostructures in Mg85Zn6Y9 alloy obtained by high-pressure and high-temperature treatments [J]. Mater. Lett., 2015, 155: 11
|
37 |
Haque N, Cochrane R F, Mullis A M. Rapid solidification morphologies in Ni3Ge: Spherulites, dendrites and dense-branched fractal structures [J]. Intermetallics, 2016, 76: 70
|
38 |
Zhou L T, Niu T T, Zou G D, et al. High-strong-ductile magnesium alloys by interactions of nanoscale quasi-long period stacking order unit with twin [J]. J. Magnes. Alloy., 2024, 12: 4953
|
39 |
Atrens A, Shi Z M, Mehreen S U, et al. Review of Mg alloy corrosion rates [J]. J. Magnes. Alloy., 2020, 8: 989
|
40 |
Feng J W, Pan Y K, Yang M, et al. A lactoglobulin-composite self-healing coating for Mg alloys [J]. ACS Appl. Bio Mater., 2021, 4: 6843
doi: 10.1021/acsabm.1c00560
pmid: 35006984
|
41 |
Zhu Q C, Li Y X, Cao F Y, et al. Towards development of a high-strength stainless Mg alloy with Al-assisted growth of passive film [J]. Nat. Commun., 2022, 13: 5838
doi: 10.1038/s41467-022-33480-w
pmid: 36192418
|
42 |
Peng Q M, Zhao S S, Li H, et al. High pressure solidification: An effective approach to improve the corrosion properties of Mg-Y based implants [J]. Int. J. Electrochem. Sci., 2012, 7: 5581
|
43 |
Yang M, Feng J W, Hu H D, et al. Microstructure and corrosion resistance of ultrahigh pressure Mg-8Li based alloys [J]. J. Alloys Compd., 2023, 966: 171543
|
44 |
Deng M, Wang L Q, Höche D, et al. Approaching “stainless magnesium” by Ca micro-alloying [J]. Mater. Horiz., 2021, 8: 589
doi: 10.1039/d0mh01380c
pmid: 34821275
|
45 |
Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435
pmid: 26480229
|
46 |
Shang Y Y, Pistidda C, Gizer G, et al. Mg-based materials for hydrogen storage [J]. J. Magnes. Alloy., 2021, 9: 1837
|
47 |
Chen J, Sakai T, Kitamura N, et al. High-pressure synthesis of amorphous MgNi1.02H2.2 [J]. J. Am. Chem. Soc., 2001, 123: 6193
pmid: 11414860
|
48 |
Takamura H, Kakuta H, Kamegawa A, et al. Crystal structure of novel hydrides in a Mg-Ni-H system prepared under an ultra high pressure [J]. J. Alloys Compd., 2002, 330-332: 157
|
49 |
Kataoka R, Goto Y, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-Ni-H and Mg-Ni-Cu-H systems [J]. J. Alloys Compd., 2007, 446-447: 142
|
50 |
Kataoka R, Kamegawa A, Takamura H, et al. High pressure synthesis of novel Mg (Ni1 - x Cu x )2 hydrides (x = 0-0.2) [J]. Mater. Trans., 2009, 50: 1179
|
51 |
Kataoka R, Goto Y, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-Ni(-H) system [J]. Mater. Trans., 2006, 47: 1957
|
52 |
Kamata Y, Kuriiwa T, Kamegawa A, et al. Effect of Cu or Ti substitution in MgNi on crystal structure and hydrogen absorption-desorption properties [J]. Mater. Trans., 2009, 50: 2064
|
53 |
Peng X Y, Liu B Z, Zhao X, et al. Effects of ultra-high pressure on phase compositions, phase configurations and hydrogen storage properties of LaMg4Ni alloys [J]. Int. J. Hydrogen Energy, 2013, 38: 14661
|
54 |
Fu H, Wu W S, Dou Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5wt%Ni alloys with dendrite interface [J]. J. Power Sources, 2016, 320: 212
|
55 |
Sun Y, Wang D B, Wang J M, et al. Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure [J]. Int. J. Hydrogen Energy, 2019, 44: 23179
|
56 |
Torres B, Martínez-Lope M J, Alonso J A, et al. Short communication: High-pressure synthesis and crystal structure of a novel Mg3CuH x ternary hydride [J]. Int. J. Hydrogen Energy, 2013, 38: 15264
|
57 |
Kyoi D, Sato T, Rönnebro E, et al. A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique [J]. J. Alloys Compd., 2004, 375: 253
|
58 |
Moser D, Bull D J, Sato T, et al. Structure and stability of high pressure synthesized Mg-TM hydrides (TM = Ti, Zr, Hf, V, Nb and Ta) as possible new hydrogen rich hydrides for hydrogen storage [J]. J. Mater. Chem., 2009, 19: 8150
|
59 |
Goto Y, Kakuta H, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-M systems (M = Li, Pd) [J]. J. Alloys Compd., 2005, 404-406: 448
|
60 |
Retuerto M, Sánchez-Benítez J, Rodríguez-Cañas E, et al. High-pressure synthesis of Mg2FeH6 complex hydride [J]. Int. J. Hydrogen Energy, 2010, 35: 7835
|
61 |
Goto Y, Kamegawa A, Takamura H, et al. Synthesis of new hydrides in Mg-Y systems by using high pressure [J]. Mater. Trans., 2002, 43: 2717
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|