Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 475-487    DOI: 10.11900/0412.1961.2024.00366
  综述 本期目录 | 过刊浏览 |
高性能超高压镁合金研究进展
付辉1, 孙勇2, 邹国栋2, 张帆1, 杨许生3, 张涛1, 彭秋明2()
1 广州大学 物理与材料科学学院 广州 510006
2 燕山大学 亚稳材料制备与技术国家重点实验室 秦皇岛 066004
3 香港理工大学 工业及系统工程学系 香港 999077
Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys
FU Hui1, SUN Yong2, ZOU Guodong2, ZHANG Fan1, YANG Xusheng3, ZHANG Tao1, PENG Qiuming2()
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
3 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
引用本文:

付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
Hui FU, Yong SUN, Guodong ZOU, Fan ZHANG, Xusheng YANG, Tao ZHANG, Qiuming PENG. Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys[J]. Acta Metall Sin, 2025, 61(3): 475-487.

全文: PDF(2946 KB)   HTML
摘要: 

镁合金作为最轻的金属结构材料,在减重领域具有广阔的应用前景。但镁合金的强度偏低、塑性较差、耐腐蚀性能不佳,这些缺点限制了镁合金的广泛应用。超高压处理技术能够使镁合金获得在常压条件下无法制备的微观结构和新相,压力和温度的结合为调控镁合金的微观结构提供了巨大潜力,为打破镁合金综合性能之间的瓶颈提供了新途径。本工作聚焦于高性能镁合金超高压研究进展,概述了超高压处理制备工艺和技术特点;重点阐述了超高压处理调控对镁合金的微观结构、力学性能、耐腐蚀性能和储氢性能的影响;最后展望了未来镁合金超高压处理研究的发展方向。

关键词 镁合金超高压强韧化耐腐蚀性能储氢性能    
Abstract

Magnesium alloys are the lightest metallic structural materials. The density of magnesium alloys is ~1.7 g/cm3, which is ~2/3 of the aluminum alloy, ~2/5 of titanium alloys, and ~1/4 of steel. Magnesium alloys possess high specific strength, excellent casting performance, excellent biocompatibility, good electromagnetic shielding performance, remarkable damping performance, and ease of recovery. They have broad application potential in aerospace, defense, automobile transportation, biomedical, electronic 3C, construction, and energy fields. China has substantial Mg resources. The development of low-cost and high-performance magnesium alloys in the lightweight field can transform resource advantages into industrial benefits while promoting energy conservation and emission reduction in production and daily life. This is strategically significant for the enhancement of the country's technology industry and the achievement of the objectives of “carbon peak and carbon neutrality”. However, commercial magnesium alloys currently possess relatively low strength, poor ductility, and corrosion resistance compared with common metallic structural materials like steel and aluminum alloys, significantly hindering the large-scale industrial application of magnesium alloys as structural materials. Many methods exist to enhance the comprehensive mechanical properties of magnesium alloys. Conventionally, the microstructure of magnesium alloys can be modified by adding alloying elements, plastic deformation, and heat treatment. The strength of magnesium alloys can be improved through grain refinement, work hardening, solid solution strengthening, and precipitation strengthening. Nevertheless, magnesium alloys prepared through these traditional methods can achieve excellent strength but at the expense of ductility, leading to the strength-ductility tradeoff in the magnesium alloy. At present, ultrahigh-pressure (UHP) treatment technology can achieve novel phases and modified microstructures that cannot be prepared under atmospheric pressure. The pressure significantly impacts the thermodynamics and dynamic parameters of metallic materials, such as the equilibrium temperature, critical radius for nucleation, interfacial free energy, chemical potential, entropy, enthalpy and heat capacity, and nucleation rate. Thus, the solid solubility, grain size, morphologies, dislocation density and types, twin types and morphologies, as well as the distribution and morphologies of the intermetallic phases of the magnesium alloys, can be modified using UHP treatment combined with temperature. It offers significant potential for altering the microstructure of magnesium alloys, providing new paths to break the bottlenecks between the comprehensive properties. This paper summarizes the progress of the research on the UHP treatment of high-performance magnesium alloys, the fabrication technology, and the technical characteristics of the UHP treatment. Moreover, the effects of UHP treatment on the mechanical properties, corrosion resistance, and hydrogen storage properties of magnesium alloys by modifying the microstructures of magnesium alloys are emphasized. Finally, the future development directions of the UHP magnesium alloys are explored.

Key wordsmagnesium alloy    ultrahigh-pressure    strength-ductility synergy    corrosion resistance    hydrogen storage property
收稿日期: 2024-11-04     
ZTFLH:  TG146.2  
基金资助:教育部长江学者教授计划项目(T2020124);国家自然科学基金项目(52371104);国家自然科学基金项目(52171126);国家自然科学基金项目(52202374);国家自然科学基金项目(52331003);广东省基础与应用基础研究基金项目(2024A1515013052);广州市基础与应用基础研究专题项目(2024A04J4289);香港理工大学项目(1-YXB4)
通讯作者: 彭秋明,pengqiuming@ysu.edu.cn,主要从事轻质合金研究
Corresponding author: PENG Qiuming, professor, Tel: (0335)8057047, E-mail: pengqiuming@ysu.edu.cn
作者简介: 付 辉,男,1988年生,博士孙 勇(共同第一作者),男,1987年生,博士
付 辉,男,1988年生,博士孙 勇(共同第一作者),男,1987年生,博士
图1  常见超高压(UHP)处理装置示意图[16,17](a) diamond anvil cell (DAC)[16] (PTM—pressure transmitting medium) (b) multi-anvil press (MAP)[17]
图2  不同状态Mg-30Al合金的OM像[9]
图3  超高压处理后双相Mg-8Li合金中β-Li相的质量分数及微观结构[6]
图4  Mg-Li基合金超高压力学性能比较[6,26,28,29]
图5  超高压处理对Mg-Al、Mg-Li及Mg-RE合金微观结构的影响
图6  在3.5%NaCl (质量分数)溶液中浸泡不同时间后4 GPa-900 Mg-13Li样品表面的准原位SEM像[12]
图7  铸态和超高压处理Mg-5Ni合金的微观结构[54]
1 Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
1 彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
2 Peng X, Liu W C, Wu G H. Strengthening-toughening methods and mechanisms of Mg-Li alloy: A review [J]. Rare Met., 2022, 41: 1176
3 Nie J F, Shin K S, Zeng Z R. Microstructure, deformation, and property of wrought magnesium alloys [J]. Metall. Mater. Trans., 2020, 51A: 6045
4 Yue Y H, Gao Y F, Hu W T, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582: 370
5 Ge B C, Fu H, Deng K K, et al. Unique strengthening mechanisms of ultrahigh pressure Mg alloys [J]. Bioact. Mater., 2018, 3: 250
doi: 10.1016/j.bioactmat.2017.11.009 pmid: 29744464
6 Fu H, Ge B C, Xin Y C, et al. Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins [J]. Nano Lett., 2017, 17: 6117
doi: 10.1021/acs.nanolett.7b02641 pmid: 28857573
7 Wang L, Lin X P, Xu C, et al. The microstructure and the mechanical property of AZ91D solidified under GPa-grade high-pressure [J]. Mater. Sci. Technol., 2019, 35: 1690
8 Peng Q M, Sun Y, Wang J, et al. Structural characteristics of $\left\{ 10\bar{1}1 \right\}$ contraction twin-twin interaction in magnesium [J]. Acta Mater., 2020, 192: 60
9 Zhao S S, Peng Q M, Li H, et al. Effects of super-high pressure on microstructures, nano-mechanical behaviors and corrosion properties of Mg-Al alloys [J]. J. Alloys Compd., 2014, 584: 56
10 Fu H, Peng Q M, Guo J X, et al. High-pressure synthesis of a nanoscale YB12 strengthening precipitate in Mg-Y alloys [J]. Scr. Mater., 2014, 76: 33
11 Feng J W, Li H N, Deng K K, et al. Unique corrosion resistance of ultrahigh pressure Mg-25Al binary alloys [J]. Corros. Sci., 2018, 143: 229
12 Feng J W, Zhang H, Zhang L, et al. Microstructure and corrosion properties for ultrahigh-pressure Mg-Li alloys [J]. Corros. Sci., 2022, 206: 110519
13 Yang H, Ding Z, Li Y T, et al. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage [J]. Rare Met., 2023, 42: 2906
14 Ouyang L Z, Liu F, Wang H, et al. Magnesium-based hydrogen storage compounds: A review [J]. J. Alloys Compd., 2020, 832: 154865
15 Wu C, Yang S Q, Li Y, et al. Microstructural evolution and electrochemical properties of the ultra-high pressure treated La0.70Mg0.30Ni3.3 hydrogen storage alloy [J]. J. Alloys Compd., 2016, 665: 231
16 Pimenta Martins L G, Comin R, Matos M J S, et al. High-pressure studies of atomically thin van der Waals materials [J]. Appl. Phys. Rev., 2023, 10: 011313
17 Tang Y, Wang H K, Ouyang X P, et al. Overcoming strength-ductility tradeoff with high pressure thermal treatment [J]. Nat. Commun., 2024, 15: 3932
doi: 10.1038/s41467-024-48435-6 pmid: 38729936
18 Bridgman P W. Recent work in the field of high pressures [J]. Rev. Mod. Phys., 1946, 18: 1
19 Schilling J S. The use of high pressure in basic and materials science [J]. J. Phys. Chem. Solids, 1998, 59: 553
20 Wu B L, Chen B, Wang C W, et al. Corrosion behavior of a novel Mg-13Li-X alloy with different grain sizes by rapid solidification rate [J]. Rare Met., 2022, 41: 3197
21 Sobczak J J, Drenchev L, Asthana R. Effect of pressure on solidification of metallic materials [J]. Int. J. Cast Met. Res., 2012, 25: 1
22 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
23 Lin X P, Dai P L, Xu C, et al. Solute redistribution and mechanism of structure refinement of Mg-Al alloy during solidification under high pressure [J]. J. Alloys Compd., 2022, 910: 164777
24 Peng X, Liu W C, Wu G H, et al. Plastic deformation and heat treatment of Mg-Li alloys: A review [J]. J. Mater. Sci. Technol., 2022, 99: 193
doi: 10.1016/j.jmst.2021.04.072
25 Ge B C, Yang M, Zu Q, et al. Lithium cluster segregation in coherent contraction twin boundaries of magnesium alloys [J]. Acta Mater., 2020, 201: 477
26 Peng Q M, Ge B C, Fu H, et al. Nanoscale coherent interface strengthening of Mg alloys [J]. Nanoscale, 2018, 10: 18028
doi: 10.1039/c8nr04805c pmid: 30229782
27 Peng Q M, Sun Y, Ge B C, et al. Interactive contraction nanotwins-stacking faults strengthening mechanism of Mg alloys [J]. Acta Mater., 2019, 169: 36
28 Zhang S, Sun Y, Wu R Z, et al. Coherent interface strengthening of ultrahigh pressure heat-treated Mg-Li-Y alloys [J]. J. Mater. Sci. Technol., 2020, 51: 79
doi: 10.1016/j.jmst.2020.02.039
29 Wang D, Huang P Z, Wu R Z, et al. Synergistically improved strength and damping capacity of Mg-Li-Y-Er-Zn-Zr alloy by ultra-high pressure treatment [J]. Mater. Sci. Eng, 2024, A915: 147205
30 Meier J M, Caris J, Luo A A. Towards high strength cast Mg-RE based alloys: Phase diagrams and strengthening mechanisms [J]. J. Magnes. Alloy., 2022, 10: 1401
31 Zhao H G, Pan J L, Li H, et al. Spherical strengthening precipitate in a Mg-10wt%Y alloy with superhigh pressure aging [J]. Mater. Lett., 2013, 96: 16
32 Fu H, Li H, Fang D Q, et al. High ductility of a bi-modal Mg-7wt.%Y alloy at low temperature prepared by high pressure boriding and semi-solid extrusion [J]. Mater. Des., 2016, 92: 240
33 Fu H, Liu N, Zhang Z W, et al. Effect of super-high pressure on microstructure and mechanical properties of Mg97Zn1Y2 alloys [J]. J. Magnes. Alloy., 2016, 4: 302
34 Matsushita M, Masuda K, Waki R, et al. Ultrafine spherulite Mg alloy with high yield strength [J]. J. Alloys Compd., 2019, 784: 1284
35 Matsushita M, Sakata Y, Senzaki T, et al. Phase relations among D03, α-Mg, and long-period stacking orders in Mg85Zn6Y9 alloy under 3 GPa [J]. Mater. Trans., 2015, 56: 910
36 Matsushita M, Yamamoto S, Nishiyama N, et al. D03 + hcp mixed phase with nanostructures in Mg85Zn6Y9 alloy obtained by high-pressure and high-temperature treatments [J]. Mater. Lett., 2015, 155: 11
37 Haque N, Cochrane R F, Mullis A M. Rapid solidification morphologies in Ni3Ge: Spherulites, dendrites and dense-branched fractal structures [J]. Intermetallics, 2016, 76: 70
38 Zhou L T, Niu T T, Zou G D, et al. High-strong-ductile magnesium alloys by interactions of nanoscale quasi-long period stacking order unit with twin [J]. J. Magnes. Alloy., 2024, 12: 4953
39 Atrens A, Shi Z M, Mehreen S U, et al. Review of Mg alloy corrosion rates [J]. J. Magnes. Alloy., 2020, 8: 989
40 Feng J W, Pan Y K, Yang M, et al. A lactoglobulin-composite self-healing coating for Mg alloys [J]. ACS Appl. Bio Mater., 2021, 4: 6843
doi: 10.1021/acsabm.1c00560 pmid: 35006984
41 Zhu Q C, Li Y X, Cao F Y, et al. Towards development of a high-strength stainless Mg alloy with Al-assisted growth of passive film [J]. Nat. Commun., 2022, 13: 5838
doi: 10.1038/s41467-022-33480-w pmid: 36192418
42 Peng Q M, Zhao S S, Li H, et al. High pressure solidification: An effective approach to improve the corrosion properties of Mg-Y based implants [J]. Int. J. Electrochem. Sci., 2012, 7: 5581
43 Yang M, Feng J W, Hu H D, et al. Microstructure and corrosion resistance of ultrahigh pressure Mg-8Li based alloys [J]. J. Alloys Compd., 2023, 966: 171543
44 Deng M, Wang L Q, Höche D, et al. Approaching “stainless magnesium” by Ca micro-alloying [J]. Mater. Horiz., 2021, 8: 589
doi: 10.1039/d0mh01380c pmid: 34821275
45 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
46 Shang Y Y, Pistidda C, Gizer G, et al. Mg-based materials for hydrogen storage [J]. J. Magnes. Alloy., 2021, 9: 1837
47 Chen J, Sakai T, Kitamura N, et al. High-pressure synthesis of amorphous MgNi1.02H2.2 [J]. J. Am. Chem. Soc., 2001, 123: 6193
pmid: 11414860
48 Takamura H, Kakuta H, Kamegawa A, et al. Crystal structure of novel hydrides in a Mg-Ni-H system prepared under an ultra high pressure [J]. J. Alloys Compd., 2002, 330-332: 157
49 Kataoka R, Goto Y, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-Ni-H and Mg-Ni-Cu-H systems [J]. J. Alloys Compd., 2007, 446-447: 142
50 Kataoka R, Kamegawa A, Takamura H, et al. High pressure synthesis of novel Mg (Ni1 - x Cu x )2 hydrides (x = 0-0.2) [J]. Mater. Trans., 2009, 50: 1179
51 Kataoka R, Goto Y, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-Ni(-H) system [J]. Mater. Trans., 2006, 47: 1957
52 Kamata Y, Kuriiwa T, Kamegawa A, et al. Effect of Cu or Ti substitution in MgNi on crystal structure and hydrogen absorption-desorption properties [J]. Mater. Trans., 2009, 50: 2064
53 Peng X Y, Liu B Z, Zhao X, et al. Effects of ultra-high pressure on phase compositions, phase configurations and hydrogen storage properties of LaMg4Ni alloys [J]. Int. J. Hydrogen Energy, 2013, 38: 14661
54 Fu H, Wu W S, Dou Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5wt%Ni alloys with dendrite interface [J]. J. Power Sources, 2016, 320: 212
55 Sun Y, Wang D B, Wang J M, et al. Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure [J]. Int. J. Hydrogen Energy, 2019, 44: 23179
56 Torres B, Martínez-Lope M J, Alonso J A, et al. Short communication: High-pressure synthesis and crystal structure of a novel Mg3CuH x ternary hydride [J]. Int. J. Hydrogen Energy, 2013, 38: 15264
57 Kyoi D, Sato T, Rönnebro E, et al. A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique [J]. J. Alloys Compd., 2004, 375: 253
58 Moser D, Bull D J, Sato T, et al. Structure and stability of high pressure synthesized Mg-TM hydrides (TM = Ti, Zr, Hf, V, Nb and Ta) as possible new hydrogen rich hydrides for hydrogen storage [J]. J. Mater. Chem., 2009, 19: 8150
59 Goto Y, Kakuta H, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-M systems (M = Li, Pd) [J]. J. Alloys Compd., 2005, 404-406: 448
60 Retuerto M, Sánchez-Benítez J, Rodríguez-Cañas E, et al. High-pressure synthesis of Mg2FeH6 complex hydride [J]. Int. J. Hydrogen Energy, 2010, 35: 7835
61 Goto Y, Kamegawa A, Takamura H, et al. Synthesis of new hydrides in Mg-Y systems by using high pressure [J]. Mater. Trans., 2002, 43: 2717
[1] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[2] 王慧远, 孟昭元, 贾海龙, 徐新宇, 花珍铭. 新型低合金含量烘烤硬化镁合金研究进展及展望[J]. 金属学报, 2025, 61(3): 372-382.
[3] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[4] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[5] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[6] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[7] 王彬杉, 徐光, 任睿, 张强, 单召辉, 樊建锋. 脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响[J]. 金属学报, 2025, 61(1): 129-142.
[8] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[9] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[10] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[11] 刘勇, 曾刚, 刘洪, 王煜, 李建龙. Zr镁合金晶粒细化机理与研究进展[J]. 金属学报, 2024, 60(2): 129-142.
[12] 陈占兴, 王玉鹏, 荣光飞, 张新房, 马腾飞, 王晓红, 邢秋玮, 朱冬冬. 微纳米Ti2AlC增强TiAl复合材料高温强韧化机制[J]. 金属学报, 2024, 60(12): 1746-1754.
[13] 杨彬彬, 宋元元, 郝龙, 姜海昌, 戎利建. 3%Cu低碳马氏体不锈钢0Cr13Ni4Mo的显微组织及耐腐蚀性能[J]. 金属学报, 2024, 60(12): 1656-1666.
[14] 南勇, 关旭, 闫海乐, 唐帅, 贾楠, 赵骧, 左良. B微合金化对CoNiV中熵合金微观组织和力学性能的影响及其机理[J]. 金属学报, 2024, 60(12): 1647-1655.
[15] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.