|
|
可充电镁电池负极材料及界面化学的研究进展 |
文恬恬1,2, 岳继礼1,2, 熊方宇1,2, 袁媛1,2, 黄光胜1,2( ), 王敬丰1,2, 潘复生1,2 |
1 重庆大学 材料科学与工程学院 重庆 400044 2 重庆大学 国家镁合金材料工程技术研究中心 重庆 400044 |
|
Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries |
WEN Tiantian1,2, YUE Jili1,2, XIONG Fangyu1,2, YUAN Yuan1,2, HUANG Guangsheng1,2( ), WANG Jingfeng1,2, PAN Fusheng1,2 |
1 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China |
引用本文:
文恬恬, 岳继礼, 熊方宇, 袁媛, 黄光胜, 王敬丰, 潘复生. 可充电镁电池负极材料及界面化学的研究进展[J]. 金属学报, 2025, 61(3): 437-454.
Tiantian WEN,
Jili YUE,
Fangyu XIONG,
Yuan YUAN,
Guangsheng HUANG,
Jingfeng WANG,
Fusheng PAN.
Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries[J]. Acta Metall Sin, 2025, 61(3): 437-454.
1 |
Zhu G Z, Tian X, Tai H C, et al. Rechargeable Na/Cl2 and Li/Cl2 batteries [J]. Nature, 2021, 596: 525
|
2 |
Han G, Lu Y F, Jia H X, et al. Magnesium-based energy materials: Progress, challenges, and perspectives [J]. J. Magnes. Alloy., 2023, 11: 3896
|
3 |
Liu D Y, Wu B B, Xu Y B, et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes [J]. Nat. Energy, 2024, 9: 559
|
4 |
Zhang H, Qiao L X, Armand M. Organic electrolyte design for rechargeable batteries: From lithium to magnesium [J]. Angew. Chem. Int. Ed., 2022, 61: e202214054
|
5 |
Wen T T, Xiao H, Tan S S, et al. Interfacial chemistry of anode/electrolyte interface for rechargeable magnesium batteries [J]. J. Magnes. Alloy., 2024, 12: 2647
|
6 |
Li Q, Sun X, Luo Q, et al. Regulation of hydrogen storage phase and its interface in magnesium-based materials for hydrogen storage performance [J]. Acta Metall. Sin., 2023, 59: 349
doi: 10.11900/0412.1961.2022.00480
|
6 |
李 谦, 孙 璇, 罗 群 等. 镁基材料中储氢相及其界面与储氢性能的调控 [J]. 金属学报, 2023, 59: 349
|
7 |
Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11: 2611
|
8 |
Wang D, Zhang Z Y, Hao Y, et al. Challenges and progress in rechargeable magnesium‐ion batteries: Materials, interfaces, and devices [J]. Adv. Funct. Mater., 2024, 34: 2410406
|
9 |
Wang Z T, Deng R R, Li R, et al. Review of research on anode materials for secondary magnesium batteries [J]. Chin. J. Rare Met., 2024, 48: 79
|
9 |
王中霆, 邓容锐, 李 荣 等. 镁二次电池负极材料的研究综述 [J]. 稀有金属, 2024, 48: 79
|
10 |
Li Z, Yao Y Y, Li B F, et al. Rechargeable magnesium batteries: Development, opportunities and challenges [J]. Chin. J. Nonferrous Met., 2021, 31: 3192
|
10 |
李 钊, 姚赢赢, 李博飞 等. 可充镁电池: 发展、机遇与挑战 [J]. 中国有色金属学报, 2021, 31: 3192
|
11 |
Xiao J H, Zhao Y X, Fan H Y, et al. Research progress on rechargeable magnesium/sulfur battery [J]. J. Chin. Ceram. Soc., 2020, 48: 963
|
11 |
肖建华, 赵宇星, 范海燕 等. 镁硫二次电池研究进展 [J]. 硅酸盐学报, 2020, 48: 963
|
12 |
Davidson R, Verma A, Santos D, et al. Formation of magnesium dendrites during electrodeposition [J]. ACS Energy Lett., 2019, 4: 375
doi: 10.1021/acsenergylett.8b02470
|
13 |
Kwak J H, Jeoun Y, Oh S H, et al. Operando visualization of morphological evolution in Mg metal anode: Insight into dendrite suppression for stable Mg metal batteries [J]. ACS Energy Lett., 2022, 7: 162
|
14 |
Lim H D, Kim D H, Park S, et al. Magnesiophilic graphitic carbon nanosubstrate for highly efficient and fast-rechargeable Mg metal batteries [J]. ACS Appl. Mater. Interfaces, 2019, 11: 38754
|
15 |
Wan B X, Dou H L, Zhao X L, et al. Three-dimensional magnesiophilic scaffolds for reduced passivation toward high-rate Mg metal anodes in a noncorrosive electrolyte [J]. ACS Appl. Mater. Interfaces, 2020, 12: 28298
|
16 |
Shen T, Luo C Z, Hao Y, et al. Magnesiophilic interface of 3D MoSe2 for reduced Mg anode overpotential [J]. Front. Chem., 2020, 8: 459
|
17 |
Bae J, Park H, Guo X L, et al. High-performance magnesium metal batteries via switching the passivation film into a solid electrolyte interphase [J]. Energy Environ. Sci., 2021, 14: 4391
|
18 |
Wang G X, Liu X, Shi H C, et al. Achieving planar electroplating/stripping behavior of magnesium metal anode for a practical magnesium battery [J]. ACS Energy Lett., 2024, 9: 48
|
19 |
Wen T T, Deng Y J, Qu B H, et al. Re-envisioning the key factors of magnesium metal anodes for rechargeable magnesium batteries [J]. ACS Energy Lett., 2023, 8: 4848
|
20 |
Davidson R, Verma A, Santos D, et al. Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities [J]. Mater. Horiz., 2020, 7: 843
|
21 |
Liu X, Du A B, Guo Z Y, et al. Uneven stripping behavior, an unheeded killer of Mg anodes [J]. Adv. Mater., 2022, 34: 2201886
|
22 |
Tian J, Lu H H, Zhang W G, et al. An effective rolling process of magnesium alloys for suppressing edge cracks: Width-limited rolling [J]. J. Magnes. Alloy., 2022, 10: 2193
|
23 |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
23 |
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
24 |
Mandai T, Somekawa H. Ultrathin magnesium metal anode—An essential component for high-energy-density magnesium battery materialization [J]. Batter. Supercaps, 2022, 5: e202200153
|
25 |
Wang L, Welborn S S, Kumar H, et al. High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (De)magnesiation-induced near-room-temperature solid-liquid phase transformation [J]. Adv. Energy Mater., 2019, 9: 1902086
|
26 |
Wang M C, Yuwono J A, Vasudevan V, et al. Atomistic mechanisms of Mg insertion reactions in group XIV anodes for Mg-ion batteries [J]. ACS Appl. Mater. Interfaces, 2019, 11: 774
|
27 |
Yaghoobnejad Asl H, Fu J T, Kumar H, et al. In situ dealloying of bulk Mg2Sn in Mg-ion half cell as an effective route to nanostructured sn for high performance Mg-ion battery anodes [J]. Chem. Mater., 2018, 30: 1815
|
28 |
Nacimiento F, Cabello M, Pérez-Vicente C, et al. On the mechanism of magnesium storage in micro- and nano-particulate tin battery electrodes [J]. Nanomaterials, 2018, 8: 501
|
29 |
Arthur T S, Singh N, Matsui M. Electrodeposited Bi, Sb and Bi1 - x Sb x alloys as anodes for Mg-ion batteries [J]. Electrochem. Commun., 2012, 16: 103
|
30 |
Sibari A, Marjaoui A, Lakhal M, et al. Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study [J]. Sol. Energy Mater. Sol. Cells, 2018, 180: 253
|
31 |
Nguyen G T H, Nguyen D T, Song S W. Unveiling the roles of formation process in improving cycling performance of magnesium stannide composite anode for magnesium-ion batteries [J]. Adv. Mater. Interfaces, 2018, 5: 1801039
|
32 |
Niu J Z, Zhang Z H, Aurbach D. Alloy anode materials for rechargeable Mg Ion batteries [J]. Adv. Energy Mater., 2020, 10: 2000697
|
33 |
Hembram K P S S, Jung H, Yeo B C, et al. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries [J]. Phys. Chem. Chem. Phys., 2016, 18: 21391
doi: 10.1039/c6cp02049f
pmid: 27425818
|
34 |
Shao Y Y, Gu M, Li X L, et al. Highly reversible Mg insertion in nanostructured Bi for Mg Ion batteries [J]. Nano Lett., 2014, 14: 255
doi: 10.1021/nl403874y
pmid: 24279987
|
35 |
Wang L, Ng A, Family R, et al. Liquid eutectic gallium-indium as a magnesium-ion battery anode with ultralong cycle life enabled by liquid-solid phase transformation during (de)magnesiation at room temperature [J]. J. Mater. Chem., 2024, 12A: 27435
|
36 |
Zheng X W, Yuan Y, Gu D C, et al. Self-healable, high-stability anode for rechargeable magnesium batteries realized by graphene-confined gallium metal [J]. Nano Lett., 2024, 24: 10734
|
37 |
Jin W, Wang Z G. Facet-dependent magnesiation behavior of α-Sn as an anode for magnesium ion batteries [J]. RSC Adv., 2017, 7: 44547
|
38 |
Legrain F, Malyi O I, Persson C, et al. Comparison of alpha and beta tin for lithium, sodium, and magnesium storage: An ab initio study including phonon contributions [J]. J. Chem. Phys., 2015, 143: 204701
|
39 |
Nguyen D T, Tran X M, Kang J, et al. Magnesium storage performance and surface film formation behavior of tin anode material [J]. ChemElectroChem, 2016, 3: 1813
|
40 |
Jung S C, Han Y K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode [J]. J. Phys. Chem., 2018, 122C: 17643
|
41 |
Rajput N N, Qu X H, Sa N Y, et al. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics [J]. J. Am. Chem. Soc., 2015, 137: 3411
doi: 10.1021/jacs.5b01004
pmid: 25668289
|
42 |
Seguin T J, Hahn N T, Zavadil K R, et al. Elucidating non-aqueous solvent stability and associated decomposition mechanisms for Mg energy storage applications from first-principles [J]. Front. Chem., 2019, 7: 175
doi: 10.3389/fchem.2019.00175
pmid: 31024883
|
43 |
Zhang J L, Liu J, Wang M, et al. The origin of anode-electrolyte interfacial passivation in rechargeable Mg-metal batteries [J]. Energy Environ. Sci., 2023, 16: 1111
|
44 |
Du Y Y, Chen Y M, Tan S S, et al. Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping [J]. Energy Storage Mater., 2023, 62: 102939
|
45 |
Cheng M X, Ren W, Zhang D, et al. Efficient single-perfluorinated borate-based electrolytes for rechargeable magnesium batteries [J]. Energy Storage Mater., 2022, 51: 764
|
46 |
Sun Y, Wang Y H, Jiang L W, et al. Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries [J]. Energy Environ. Sci., 2023, 16: 265
|
47 |
Huang X T, Tan S S, Chen J L, et al. Asymmetric SO3CF-3-grafted boron-center anion enables boron-containing interphase for high-performance rechargeable Mg batteries [J]. Adv. Funct. Mater., 2024, 34: 2314146
|
48 |
Tutusaus O, Mohtadi R, Arthur T S, et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries [J]. Angew. Chem. Int. Ed., 2015, 54: 7900
doi: 10.1002/anie.201412202
pmid: 26013580
|
49 |
Du A B, Zhang Z H, Qu H T, et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery [J]. Energy Environ. Sci., 2017, 10: 2616
|
50 |
Zhao-Karger Z, Gil Bardaji M E, Fuhr O, et al. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries [J]. J. Mater. Chem., 2017, 5A: 10815
|
51 |
Zhang D, Wang Y R, Yang Y, et al. Constructing efficient Mg(CF3SO3)2 electrolyte via tailoring solvation and interface chemistry for high-performance rechargeable magnesium batteries [J]. Adv. Energy Mater., 2023, 13: 2301795
|
52 |
Wang H, Feng X F, Chen Y, et al. Reversible electrochemical interface of Mg metal and conventional electrolyte enabled by intermediate adsorption [J]. ACS Energy Lett., 2020, 5: 200
|
53 |
Hu X C, Shen Z Z, Wan J, et al. Insight into interfacial processes and degradation mechanism in magnesium metal batteries [J]. Nano Energy, 2020, 78: 105338
|
54 |
Chen C F, Chen J L, Tan S S, et al. Regulating solvation sheath by introducing multifunctional fluoride boronic esters for highly efficient magnesium stripping/plating [J]. Energy Storage Mater., 2023, 59: 102792
|
55 |
Liu X, Wang G X, Lv Z L, et al. A perspective on uniform plating behavior of Mg metal anode: Diffusion limited theory versus nucleation theory [J]. Adv. Mater., 2024, 36: 2306395
|
56 |
Legrain F, Manzhos S. Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon: A first-principles study [J]. J. Power Sources, 2015, 274: 65
|
57 |
Zhao Q N, Zhao K Q, Han G F, et al. High-capacity, fast-charging and long-life magnesium/black phosphorous composite negative electrode for non-aqueous magnesium battery [J]. Nat. Commun., 2024, 15: 8680
doi: 10.1038/s41467-024-52949-4
pmid: 39375331
|
58 |
Banerjee S, Pati S K. Anodic performance of black phosphorus in magnesium-ion batteries: The significance of Mg-P bond-synergy [J]. Chem. Commun., 2016, 52: 8381
|
59 |
Niu J Z, Gao H, Ma W S, et al. Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries [J]. Energy Storage Mater., 2018, 14: 351
|
60 |
Kitada A, Kang Y, Uchimoto Y, et al. Electrochemical reactivity of magnesium ions with Sn-based binary alloys (Cu-Sn, Pb-Sn, and In-Sn) [J]. ECS Trans., 2014, 58: 75
|
61 |
Song M J, Niu J Z, Yin K B, et al. Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage [J]. Nano Res., 2019, 12: 801
|
62 |
Gu D C, Yuan Y, Liu J W, et al. The electrochemical properties of bismuth-antimony-tin alloy anodes for magnesium ion batteries [J]. J. Power Sources, 2022, 548: 232076
|
63 |
Gu D C, Yuan Y, Peng X H, et al. Realizing high-stability anodes for rechargeable magnesium batteries via in situ-formed nanoporous Bi and nanosized Sn [J]. J. Mater. Chem., 2024, 12A: 26890
|
64 |
Peng X H, Yuan Y, Gu D C, et al. Unlocking the power of magnesium batteries: Synergistic effect of InSb-C composites to achieve superior electrochemical performance [J]. Small, 2024, 20: 2400967
|
65 |
Yang G L, Li Y J, Zhang C, et al. In situ formed magnesiophilic sites guiding uniform deposition for stable magnesium metal anodes [J]. Nano Lett., 2022, 22: 9138
|
66 |
Li Y J, Yang G L, Zhang C, et al. Grain-boundary-rich triphasic artificial hybrid interphase toward practical magnesium metal anodes [J]. Adv. Funct. Mater., 2022, 33: 2210639
|
67 |
Chen T N, Sai Gautam G, Canepa P. Ionic transport in potential coating materials for Mg batteries [J]. Chem. Mater., 2019, 31: 8087
doi: 10.1021/acs.chemmater.9b02692
|
68 |
Liu Z, Li Y S, Ji Y Z, et al. Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations [J]. Cell Rep. Phys. Sci., 2021, 2: 100294
|
69 |
Zhang S X, Cheng M X, Zhang P, et al. Insights into the stability of magnesium borate salts for rechargeable magnesium batteries from AIMD simulations [J]. Chem. Commun., 2022, 58: 11969
|
70 |
Song Z H, Zhang Z H, Du A B, et al. Uniform magnesium electrodeposition via synergistic coupling of current homogenization, geometric confinement, and chemisorption effect [J]. Adv. Mater., 2021, 33: 2100224
|
71 |
Liang Y L, Feng R J, Yang S Q, et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode [J]. Adv. Mater., 2011, 23: 640
|
72 |
Maddegalla A, Mukherjee A, Blázquez J A, et al. AZ31 magnesium alloy foils as thin anodes for rechargeable magnesium batteries [J]. ChemSusChem, 2021, 14: 4690
doi: 10.1002/cssc.202101323
pmid: 34339584
|
73 |
Mandai T, Somekawa H. Metallurgical approach to enhance the electrochemical activity of magnesium anodes for magnesium rechargeable batteries [J]. Chem. Commun., 2020, 56: 12122
|
74 |
Liu H, Tan S S, Wang Z T, et al. Binary Mg-1 at%Gd alloy anode for high-performance rechargeable magnesium batteries [J]. ChemSusChem, 2024, 17: e202301589
|
75 |
Liu H. Effect of alloying elements on electrochemical performance of magnesium anode in magnesium ion battery [D]. Chongqing: Chongqing University, 2022
|
75 |
刘 晗. 合金元素对镁离子电池镁负极电化学性能的影响 [D]. 重庆: 重庆大学, 2022
|
76 |
Zhang B X, Yue J L, Wang D, et al. Alloy alleviating galvanic corrosion enables uniform Mg deposition with long cycle life [J]. ACS Energy Lett., 2024, 9: 1771
|
77 |
He G, Li Q W, Shen Y L, et al. Flexible amalgam film enables stable lithium metal anodes with high capacities [J]. Angew. Chem. Int. Ed., 2019, 58: 18466
doi: 10.1002/anie.201911800
pmid: 31595629
|
78 |
Liu J J, Hu H, Wu T Q, et al. Tailoring the microstructure of Mg-Al-Sn-RE alloy via friction stir processing and the impact on its electrochemical discharge behaviour as the anode for Mg-air battery [J]. J. Magnes. Alloy., 2024, 12: 1554
|
79 |
Huang X, Dai Q W, Xiang Q, et al. Microstructure design of advanced magnesium-air battery anodes [J]. J. Magnes. Alloy., 2024, 12: 443
|
80 |
Wei C L, Tan L W, Zhang Y C, et al. Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries [J]. Energy Storage Mater., 2022, 48: 447
|
81 |
Song C, Yuan Y, Gu D C, et al. The evaluation of Mg-Ga compounds as electrode materials for Mg-ion batteries via ab initio simulation [J]. J. Electrochem. Soc., 2021, 168: 110539
|
82 |
Pechberty C, Hagopian A, Ledeuil J B, et al. Alloying electrode coatings towards better magnesium batteries [J]. J. Mater. Chem., 2022, 10A: 12104
|
83 |
Zhao Y M, Du A B, Dong S M, et al. A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes [J]. ACS Energy Lett., 2021, 6: 2594
|
84 |
Zhuang Y C, Wu D Z, Wang F, et al. Tailoring a hybrid functional layer for Mg metal anodes in conventional electrolytes with a low overpotential [J]. ACS Appl. Mater. Interfaces, 2022, 14: 47605
|
85 |
Lv R J, Guan X Z, Zhang J H, et al. Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase [J]. Natl. Sci. Rev., 2020, 7: 333
doi: 10.1093/nsr/nwz157
pmid: 34692049
|
86 |
Yang B P, Xia L Y, Li R, et al. Superior plating/stripping performance through constructing an artificial interphase layer on metallic Mg anode [J]. J. Mater. Sci. Technol., 2023, 157: 154
doi: 10.1016/j.jmst.2023.01.054
|
87 |
Wang Y Q, Cheng F L, Huang Y Z, et al. Vertically-oriented growth of MgMOF layer via heteroepitaxial guidance for highly stable magnesium-metal anode [J]. Energy Storage Mater., 2023, 61: 102911
|
88 |
Zhang Y J, Li J, Zhao W Y, et al. Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode [J]. Adv. Mater., 2022, 34: 2108114
|
89 |
Li C, Shyamsunder A, Key B, et al. Stabilizing magnesium plating by a low-cost inorganic surface membrane for high-voltage and high-power Mg batteries [J]. Joule, 2023, 7: 2798
|
90 |
Son S B, Gao T, Harvey S P, et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes [J]. Nat. Chem., 2018, 10: 532
|
91 |
Wen T T, Qu B H, Tan S S, et al. Rational design of artificial interphase buffer layer with 3D porous channel for uniform deposition in magnesium metal anodes [J]. Energy Storage Mater., 2023, 55: 816
|
92 |
Wen T T, Tan S S, Li R, et al. Large-scale integration of the ion-reinforced phytic acid layer stabilizing magnesium metal anode [J]. ACS Nano, 2024, 18: 11740
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|