Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 309-322    DOI: 10.11900/0412.1961.2023.00087
  研究论文 本期目录 | 过刊浏览 |
静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为
宋昱杉1, 刘叡1(), 崔宇2, 刘莉1(), 王福会1
1 东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Stress Corrosion Behavior of Ni-Cr-Mo-V Steel in 3.5%NaCl Solution Under the Interaction of Hydrostatic Pressure and Tensile Stress
SONG Yushan1, LIU Rui1(), CUI Yu2, LIU Li1(), WANG Fuhui1
1 Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

宋昱杉, 刘叡, 崔宇, 刘莉, 王福会. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为[J]. 金属学报, 2025, 61(2): 309-322.
Yushan SONG, Rui LIU, Yu CUI, Li LIU, Fuhui WANG. Stress Corrosion Behavior of Ni-Cr-Mo-V Steel in 3.5%NaCl Solution Under the Interaction of Hydrostatic Pressure and Tensile Stress[J]. Acta Metall Sin, 2025, 61(2): 309-322.

全文: PDF(7369 KB)   HTML
摘要: 

Ni-Cr-Mo-V钢在深海环境的长期服役过程中会受到复杂力学环境的影响,可能会引发严重的腐蚀失效。为探究静水压力环境中Ni-Cr-Mo-V钢的应力腐蚀开裂敏感性,采用电化学测试方法、微观形貌表征手段和慢应变速率拉伸实验研究了静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢的局部腐蚀行为和应力腐蚀行为。结果表明,静水压力和拉伸应力交互作用对Ni-Cr-Mo-V钢局部腐蚀行为的双重作用会影响其应力腐蚀行为。一方面,拉伸应力与静水压力的交互作用加速了点蚀坑的扩展,并影响了腐蚀产物在基体表面的附着。另一方面,静水压力和拉伸应力促进了金属离子在Ni-Cr-Mo-V钢表面的水解,从而导致金属表面积累更多的H+

关键词 Ni-Cr-Mo-V钢深海腐蚀静水压力应力腐蚀开裂双电层    
Abstract

With the promotion of the deep-sea strategy of China, the safety of metallic structural materials in deep sea is considered critical for development of deep-sea engineering equipment. High-strength low-alloy (HSLA) steel is widely used in pressure hulls of deep-sea submarines and oil platforms. However, HSLA steel is affected by the complex mechanical environment during its long-term service in the deep sea, leading to severe corrosion failure. Therefore, research on the effects of the hydrostatic pressure and tensile stress in deep sea on the stress corrosion behavior of HSLA steel is beneficial for the development, application, and lifetime prediction of deep-sea engineering equipment. Here, experiments were conducted using Ni-Cr-Mo-V steel, and the electrochemical measurement system and slow strain rate tensile (SSRT) test system in a simulated deep-sea environment were established in laboratory. The electric double-layer structure at the metal-solution interface was investigated using the differential capacitance curve, and the corrosion current density of the alloy was characterized with the linear polarization curve. The morphology of pits at local corrosion sites and fracture after the SSRT test were observed through SEM, and the size of the pits was analyzed using white-light interferometry. The stress corrosion cracking (SCC) sensitivity of the alloy was studied utilizing the SSRT test. The effects of the hydrostatic pressure and deformation on the concentration of H+ near the alloy surface were determined via the hydrolysis of metal cations. The results illustrated that the hydrostatic pressure can improve the SCC susceptibility of Ni-Cr-Mo-V steel in 3.5%NaCl solution, which can be affected by the dual effects of the interaction of the hydrostatic pressure and tensile stress on the local corrosion behavior. On the one hand, the interaction of the tensile stress and hydrostatic pressure affects the expansion and structure of pits and suppresses the adhesion of corrosion products to the alloy surface. On the other hand, the hydrostatic pressure and tensile stress affect the electric double layer at the metal-solution interface and subsequently promote the hydrolysis of metal cations, increasing the H+ concentration near the alloy surface. Additionally, the fracture mode of Ni-Cr-Mo-V steel in 3.5%NaCl solution is independent of the hydrostatic pressure; however, the hydrostatic pressure determines the shallow and small structure of the dimples in the fracture.

Key wordsNi-Cr-Mo-V steel    deep-sea corrosion    hydrostatic pressure    stress corrosion cracking    electric double layer
收稿日期: 2023-03-02     
ZTFLH:  TG174.4  
基金资助:国家重点研发计划项目(2022YFB3808800);中国博士后科学基金项目(2021M700711);国家自然科学基金项目
通讯作者: 刘 叡,liurui@mail.neu.edu.cn,主要从事深海极端环境金属的腐蚀与防护研究;
刘 莉,liuli@mail.neu.edu.cn,主要从事深海极端环境金属的腐蚀与防护研究
Corresponding author: LIU Rui, associate professor, Tel: 18842505442, E-mail: liurui@mail.neu.edu.cn
LIU Li, professor, Tel: 15904072057, E-mail: liuli@mail.neu.edu.cn
作者简介: 宋昱杉,男,1997年生,硕士生
图1  慢应变速率拉伸(SSRT)实验样品几何尺寸图及用于电化学测试的U形弯曲加载试样和原始试样示意图
图2  模拟深海环境SSRT测试系统和模拟深海环境电化学测试系统示意图
图3  原始Ni-Cr-Mo-V钢显微组织的SEM二次电子像和OM像
图4  Ni-Cr-Mo-V钢在不同环境中进行SSRT实验后得到的应变-应力曲线、断裂伸长率和断裂强度
图5  Ni-Cr-Mo-V钢在不同环境中经过SSRT实验后的断口侧面形貌
图6  Ni-Cr-Mo-V钢在不同环境中经过SSRT实验后的断口表面形貌
图7  Ni-Cr-Mo-V钢在不同环境中经过SSRT实验后的断口纤维区裂纹
图8  断口纤维区裂纹的尺寸统计及平均值
图9  Ni-Cr-Mo-V钢经过应变速率为1 × 10-6 s-1的SSRT实验后的断口放大像
图10  Ni-Cr-Mo-V钢经过应变速率为5 × 10-6 s-1的SSRT实验后的断口放大像
图11  未变形和变形Ni-Cr-Mo-V钢在3.5%NaCl溶液中的局部腐蚀形貌
图12  不同条件中的点蚀坑尺寸概率分布
图13  Ni-Cr-Mo-V钢在不同条件下的微分电容曲线
图14  Ni-Cr-Mo-V钢在不同条件下的线性极化曲线、线性极化电阻和腐蚀电流密度
图15  Ni-Cr-Mo-V钢经过应变速率为1 × 10-6的SSRT实验后的侧面形貌放大图
图16  静水压力环境中Ni-Cr-Mo-V钢应力腐蚀开裂示意图
图17  不同环境中Ni-Cr-Mo-V钢表面金属离子水解产生的H+的浓度
1 Hu S B, Yuan X W, Liu L, et al. Influence of hydrostatic pressure on the corrosion and discharging behavior of Al-Zn-In-Mg-Ti alloy [J]. J. Alloys Compd., 2023, 936: 168197
2 Liu R, Liu L, Wang F H. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments—A review [J]. J. Mater. Sci. Technol., 2022, 112: 230
3 Liu R, Song Y S, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: Understanding electrochemical corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111204
4 Song Y S, Liu R, Cui Y, et al. Corrosion of high-strength steel in 3.5% NaCl solution under hydrostatic pressure: Initial corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111229
5 Song L F, Liu Z Y, Hu J P, et al. Stress corrosion cracking of 2205 duplex stainless steel with simulated welding microstructures in simulated sea environment at different depths [J]. J. Mater. Eng. Perform., 2020, 29: 5476
6 Hu S B, Liu R, Liu L, et al. Influence of temperature and hydrostatic pressure on the galvanic corrosion between 90/10 Cu-Ni and AISI 316L stainless steel [J]. J. Mater. Res. Technol., 2021, 13: 1402
7 Liu R, Cui Y, Liu L, et al. Study on the mechanism of hydrostatic pressure promoting electrochemical corrosion of pure iron in 3.5% NaCl solution [J]. Acta Mater., 2021, 203: 116467
8 Hu S B, Liu R, Liu L, et al. Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy [J]. Corros. Sci., 2020, 163: 108242
9 Ma H Y, Liu R, Ke P L, et al. Effect of hydrostatic pressure on the pitting corrosion of 17-4PH martensitic stainless steel [J]. Eng. Fail. Anal., 2022, 138: 106367
10 Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
11 Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
12 Liu R, Cui Y, Liu L, et al. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2020, 165: 108402
13 Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment [J]. Int. J. Hydrogen Energy, 2017, 42: 27446
14 Hao W K, Liu Z Y, Wang X Z, et al. Present situation and prospect of studies on high strength steel and corrosion resistance in naval ship and submarine [J]. Equip. Environ. Eng., 2014, 11(1): 54
14 郝文魁, 刘智勇, 王显宗 等. 舰艇用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(1): 54
15 Hao W K, Liu Z Y, Wang X Z, et al. Current situation and prospect of studies on strength and corrosion resistance of high strength steel for ocean platform [J]. Equip. Environ. Eng., 2014, 11(2): 50
15 郝文魁, 刘智勇, 王显宗 等. 海洋平台用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(2): 50
16 Liu B, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behavior of pure nickel [J]. Int. J. Electrochem. Sci., 2012, 7: 1864
17 Xiong X L, Tao X, Zhou Q J, et al. Hydrostatic pressure effects on hydrogen permeation in A514 steel during galvanostatic hydrogen charging [J]. Corros. Sci., 2016, 112: 86
18 Xiong X L, Ma H X, Tao X, et al. Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron [J]. Electrochim. Acta, 2017, 255: 230
19 Gutman E M. Thermodynamics of the mechanico-chemical effect: I. Derivation of basic equations. Nature of the effect [J]. Sov. Mater. Sci., 1968, 3: 190
20 Gutman E M. Thermodynamics of the mechanico-chemical effect: II. The range of operation of nonlinear laws [J]. Sov. Mater. Sci., 1967, 3: 293
21 Kan B, Wu W J, Yang Z X, et al. Stress-induced hydrogen redistribution and corresponding fracture behavior of Q960E steel at different hydrogen content [J]. Mater. Sci. Eng., 2020, A775: 138963
22 Lin B, Hu R G, Ye C Q, et al. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes [J]. Electrochim. Acta, 2010, 55: 6542
23 Liu C, Li X, Revilla R I, et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels [J]. Corros. Sci., 2021, 179: 109150
24 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
25 Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
26 Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 401
27 Liu Z Y, Li X G, Cheng Y F. In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution [J]. Electrochem. Commun., 2010, 12: 936
28 Atrens A, Wang J Q, Stiller K, et al. Atom probe field ion microscope measurements of carbon segregation at an α:α grain boundary and service failures by intergranular stress corrosion cracking [J]. Corros. Sci., 2006, 48: 79
29 Zhao Y, Zhou E Z, Liu Y Z, et al. Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Corros. Sci., 2017, 126: 142
30 Runci A, Provis J L, Serdar M. Revealing corrosion parameters of steel in alkali-activated materials [J]. Corros. Sci., 2023, 210: 110849
31 Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
32 Zhao Y, Zhang T, Xiong H, et al. Bridge for the thermodynamics and kinetics of electrochemical corrosion: Modeling on dissolution, ionization, diffusion and deposition in metal/solution interface [J]. Corros. Sci., 2021, 191: 109763
33 Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
34 Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
35 Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
36 Shi R J, Ma Y, Wang Z D, et al. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces [J]. Acta Mater., 2020, 200: 686
37 Takahashi J, Kawakami K, Kobayashi Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel [J]. Acta Mater., 2018, 153: 193
38 Nagao A, Martin M L, Dadfarnia M, et al. The effect of nanosized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel [J]. Acta Mater., 2014, 74: 244
[1] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[3] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[4] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[5] 马荣耀, 穆鑫, 刘博, 王长罡, 魏欣, 赵林, 董俊华, 柯伟. 静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1593-1605.
[6] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[7] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[8] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[9] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[10] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[11] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[12] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[13] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[14] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[15] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.