|
|
静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为 |
宋昱杉1, 刘叡1( ), 崔宇2, 刘莉1( ), 王福会1 |
1 东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819 2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Stress Corrosion Behavior of Ni-Cr-Mo-V Steel in 3.5%NaCl Solution Under the Interaction of Hydrostatic Pressure and Tensile Stress |
SONG Yushan1, LIU Rui1( ), CUI Yu2, LIU Li1( ), WANG Fuhui1 |
1 Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
宋昱杉, 刘叡, 崔宇, 刘莉, 王福会. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为[J]. 金属学报, 2025, 61(2): 309-322.
Yushan SONG,
Rui LIU,
Yu CUI,
Li LIU,
Fuhui WANG.
Stress Corrosion Behavior of Ni-Cr-Mo-V Steel in 3.5%NaCl Solution Under the Interaction of Hydrostatic Pressure and Tensile Stress[J]. Acta Metall Sin, 2025, 61(2): 309-322.
1 |
Hu S B, Yuan X W, Liu L, et al. Influence of hydrostatic pressure on the corrosion and discharging behavior of Al-Zn-In-Mg-Ti alloy [J]. J. Alloys Compd., 2023, 936: 168197
|
2 |
Liu R, Liu L, Wang F H. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments—A review [J]. J. Mater. Sci. Technol., 2022, 112: 230
|
3 |
Liu R, Song Y S, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: Understanding electrochemical corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111204
|
4 |
Song Y S, Liu R, Cui Y, et al. Corrosion of high-strength steel in 3.5% NaCl solution under hydrostatic pressure: Initial corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111229
|
5 |
Song L F, Liu Z Y, Hu J P, et al. Stress corrosion cracking of 2205 duplex stainless steel with simulated welding microstructures in simulated sea environment at different depths [J]. J. Mater. Eng. Perform., 2020, 29: 5476
|
6 |
Hu S B, Liu R, Liu L, et al. Influence of temperature and hydrostatic pressure on the galvanic corrosion between 90/10 Cu-Ni and AISI 316L stainless steel [J]. J. Mater. Res. Technol., 2021, 13: 1402
|
7 |
Liu R, Cui Y, Liu L, et al. Study on the mechanism of hydrostatic pressure promoting electrochemical corrosion of pure iron in 3.5% NaCl solution [J]. Acta Mater., 2021, 203: 116467
|
8 |
Hu S B, Liu R, Liu L, et al. Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy [J]. Corros. Sci., 2020, 163: 108242
|
9 |
Ma H Y, Liu R, Ke P L, et al. Effect of hydrostatic pressure on the pitting corrosion of 17-4PH martensitic stainless steel [J]. Eng. Fail. Anal., 2022, 138: 106367
|
10 |
Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
|
11 |
Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
|
12 |
Liu R, Cui Y, Liu L, et al. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2020, 165: 108402
|
13 |
Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment [J]. Int. J. Hydrogen Energy, 2017, 42: 27446
|
14 |
Hao W K, Liu Z Y, Wang X Z, et al. Present situation and prospect of studies on high strength steel and corrosion resistance in naval ship and submarine [J]. Equip. Environ. Eng., 2014, 11(1): 54
|
14 |
郝文魁, 刘智勇, 王显宗 等. 舰艇用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(1): 54
|
15 |
Hao W K, Liu Z Y, Wang X Z, et al. Current situation and prospect of studies on strength and corrosion resistance of high strength steel for ocean platform [J]. Equip. Environ. Eng., 2014, 11(2): 50
|
15 |
郝文魁, 刘智勇, 王显宗 等. 海洋平台用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(2): 50
|
16 |
Liu B, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behavior of pure nickel [J]. Int. J. Electrochem. Sci., 2012, 7: 1864
|
17 |
Xiong X L, Tao X, Zhou Q J, et al. Hydrostatic pressure effects on hydrogen permeation in A514 steel during galvanostatic hydrogen charging [J]. Corros. Sci., 2016, 112: 86
|
18 |
Xiong X L, Ma H X, Tao X, et al. Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron [J]. Electrochim. Acta, 2017, 255: 230
|
19 |
Gutman E M. Thermodynamics of the mechanico-chemical effect: I. Derivation of basic equations. Nature of the effect [J]. Sov. Mater. Sci., 1968, 3: 190
|
20 |
Gutman E M. Thermodynamics of the mechanico-chemical effect: II. The range of operation of nonlinear laws [J]. Sov. Mater. Sci., 1967, 3: 293
|
21 |
Kan B, Wu W J, Yang Z X, et al. Stress-induced hydrogen redistribution and corresponding fracture behavior of Q960E steel at different hydrogen content [J]. Mater. Sci. Eng., 2020, A775: 138963
|
22 |
Lin B, Hu R G, Ye C Q, et al. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes [J]. Electrochim. Acta, 2010, 55: 6542
|
23 |
Liu C, Li X, Revilla R I, et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels [J]. Corros. Sci., 2021, 179: 109150
|
24 |
Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
|
25 |
Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
|
26 |
Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 401
|
27 |
Liu Z Y, Li X G, Cheng Y F. In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution [J]. Electrochem. Commun., 2010, 12: 936
|
28 |
Atrens A, Wang J Q, Stiller K, et al. Atom probe field ion microscope measurements of carbon segregation at an α:α grain boundary and service failures by intergranular stress corrosion cracking [J]. Corros. Sci., 2006, 48: 79
|
29 |
Zhao Y, Zhou E Z, Liu Y Z, et al. Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Corros. Sci., 2017, 126: 142
|
30 |
Runci A, Provis J L, Serdar M. Revealing corrosion parameters of steel in alkali-activated materials [J]. Corros. Sci., 2023, 210: 110849
|
31 |
Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
|
32 |
Zhao Y, Zhang T, Xiong H, et al. Bridge for the thermodynamics and kinetics of electrochemical corrosion: Modeling on dissolution, ionization, diffusion and deposition in metal/solution interface [J]. Corros. Sci., 2021, 191: 109763
|
33 |
Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
|
34 |
Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
|
35 |
Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
|
36 |
Shi R J, Ma Y, Wang Z D, et al. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces [J]. Acta Mater., 2020, 200: 686
|
37 |
Takahashi J, Kawakami K, Kobayashi Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel [J]. Acta Mater., 2018, 153: 193
|
38 |
Nagao A, Martin M L, Dadfarnia M, et al. The effect of nanosized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel [J]. Acta Mater., 2014, 74: 244
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|